Synthesizing Intensional Behavior Models by Graph Transformation

Carlo Ghezzi Andrea Mocci Mattia Monga
Politecnico di Milano Politecnico di Milano Universita degli Studi di Milano
DeepSE Group at DEI DeepSE Group at DEI DICo

Piazza L. da Vinci, 32
20133 Milano, Italy
ghezzi@elet.polimi.it

Abstract

This paper describes an approach (SPY) to recovering
the specification of a software component from the observa-
tion of its run-time behavior. It focuses on components that
behave as data abstractions. Components are assumed to
be black boxes that do not allow any implementation inspec-
tion. The inferred description may help understand what the
component does when no formal specification is available.
SPY works in two main stages. First, it builds a determin-
istic finite-state machine that models the partial behavior
of instances of the data abstraction. This is then general-
ized via graph transformation rules. The rules can gener-
ate a possibly infinite number of behavior models, which
generalize the description of the data abstraction under an
assumption of “regularity” with respect to the observed be-
havior. The rules can be viewed as a likely specification of
the data abstraction. We illustrate how SPY works on rele-
vant examples and we compare it with competing methods.

1. Introduction and Motivations

A specification of a component is a formal documen-
tation of its behavior upon which clients can rely [14].
There is still no universally accepted way to formally spec-
ify a component. However, most approaches distinguish
between a syntactic part, which describes the component’s
signature, and a semantic part, which describes the visi-
ble effects for the clients, achieved by using the component
through its interface. The semantic part can be expressed
in a formal notation, such as JML [18], which can be used
to specify contracts [20] via pre-, post-conditions, and in-
variants. Other component descriptions may be provided in
terms of different kinds of state machine models [15, 8].

Producing a specification can be as expensive as writing
the component itself, therefore in practice an interface doc-
umentation is often given informally. Furthermore, often it

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE

Piazza L. da Vinci, 32
20133 Milano, Italy
mocci@elet.polimi.it

430

Via Comelico, 39
20135 Milano, Italy
mattia.monga@unimi.it

is not kept fully consistent with the actual implementation
during software evolution. Thus, the ability to recover the
specification from the component may help improving its
documentation.

The lack of a precise specification is especially trou-
blesome in a scenario where components are exposed as
black boxes for possible use by others, as in the case of
Web services or, more generally, Service Oriented Archi-
tectures (SOASs) [17]. In a SOA, an explicit discovery phase
supports the selection of possible candidate components to
be composed. Discovery relies on a specification, which
should tell what the service actually does. Furthermore, the
code of an exposed service is not available for inspection.
It may be invoked remotely from clients, but its internal de-
tails cannot be examined.

The goal of our research is to infer a formal specification
of black box components by observing their run-time behav-
ior. This paper investigates an important preliminary step. It
focuses on stateful components that behave as data abstrac-
tions; more specifically, on components —implemented as
Java classes— that behave as data containers. Being black-
boxes, components can only be observed by dynamically
invoking the operations exported through their interface and
by inspecting the values returned from the calls.

The main input of our inference approach, called SPY
(specification recovery) is a description of the interface of
the data abstraction, that is, the signature of its constructors
and methods. Every method is considered a modifier of the
internal state. If a method has a non-void return type, we
call it an observer. By definition, an observer is pure if it
does not modify the internal state of the object. A secondary
input consists of a set of instance pools which are used to
get values for method parameters.

Because SPY is based on dynamic analysis, a component
undergoes a sequence of state changes. It is thus necessary
to state precisely and detect when the same state is entered.
This is captured by the notion of behavioral equivalence,
as given by [10]. Given two objects 01 and o, instances of

Black Box

Step 1:

BEM
Model:Section 2.1
Method:Section 3.1

Instance Pools —— > .—>

Step 2: Step 3:
Canonical Terms Intensional Behavior Models
Example: Example:Figure 5

Model:Section 2.2
Method:Section 3.2

Model:Section 2.3
Method:Section 3.3

BEM State Bounds

Figure 1: Outline of the proposed method and the paper structure

push(String) Push(String)
Stack Stack
size ()= size () >0
Stack() —~ top () ~ Error top () is String
isEmpty()=true isEmpty()="false
\/
pop() pop()

Figure 2: The ADABU model of the Stack data abstraction.

a class C, 01 and og are behaviorally equivalent if for any
sequence of operations ¢ of C' ending with an observer, the
objects 01.t and 0.t obtained by invoking ¢ are themselves
behaviorally equivalent. For observers returning primitive
types, they are behaviorally equivalent if their values are the
same. In other words, behavioral equivalence is an opera-
tional way to specify instances that are in the same “abstract
state” [14], independent of their actual internal state.

Figure 1 outlines our approach together with the struc-
ture of this paper. Starting from a data abstraction signature
and instance pools, our approach does the following:

1. We build (up to a configurable bound to the number
of states k) a finite state automaton where each state
denotes behaviorally equivalent classes of objects (be-
havioral equivalence model BEM) (Section 3.1).

2. We label each BEM state with a canonical term, that
is, a string representing a sequence of method calls
that can generate an object belonging to the equiva-
lence class denoted by that state (Section 3.2).

3. We build a set of graph transformation rules that can
generate the labeled BEM (Section 3.3.1), and then we
apply invariant detection to generalize the rules and
obtain an intensional behavior model, which can pro-
duce BEMs describing every possible behavior of the
data abstraction (See Section 3.3).

The paper is organized as follows. Section 2 describes
the background concepts and the rationale of our method
through an example. Section 3 details the phases of the re-
covery of intensional behavior models through its phases.
Section 4 illustrates the state of the art and positions our

431

public class Stack {
public Stack() { .. }
public void push(String element) { .. }
public void pop() throws Error { .. }
public String top() throws Error { .. }
public boolean isEmpty() { .. }
public int size() { .. }

Figure 3: The public interface of a Stack of Strings

contribution. Section 5 evaluates our approach. Finally,
Section 6 draws some conclusions and outlines future re-
search directions.

2. An Introductory Example

This section provides a stepwise and informal introduc-
tion to the specifications recovered by SPY and shows how
they apply to the venerable Stack example, whose interface
is shown on Figure 3. The main focus here is on the models
we can recover with SPY. Section 3 will then focus on our
main contribution, namely the inference process supported
by SPY, through which specifications can be recovered.

Although Stack is a simple data abstraction, it has been
used traditionally as a reference example for formal spec-
ification, including approaches to specification recovery:
from pioneers (like DAIKON [12]) to recent ones (like
DYSY [7]). The application of our approach to more com-
plex data abstractions is discussed later in Section 4.

2.1. Behavioral equivalence models

In the literature, behavior models are used to describe
software components as finite state automata. They do so at
different levels of abstraction by identifying states through
an abstraction criterion, stated by a predicate, on the return
values of observers. A state represents all instance objects
such that the return values of observers satisfy the criterion
associated with the state. Different approaches differ by the
choosen abstraction criteria, which are a direct consequence
of the purpose for which the model is used or inferred.

For example, ADABU [8] can recover behavior models
that, in the case of Stack, is illustrated in Figure 2. The

push(b) push(v) PPO pusi(a) push(b)
A VN ﬂ S S
Stack Stack Stack Stack Stack
size ()=2 size)=1 size ()=0 size ()=1 size ()=2
top()=b top()=b top () ~» Error top()=a top()=b
isEmpty()=false isEmpty()="false isEmpty()=true isEmpty()=false isEmpty()=false
< ~—"
pop() s pop() Stack() Por() 3 s pop()
|| 3|2
null
Stack Stack
size)=2 size ()=2
top()=a top()=a

isEmpty()="false

isEmpty()=false

Figure 4: A BEM of the Stack data abstraction

model can show that after a push(...) operation the stack
is not empty. Also, distinctive properties as the fact that
the fop() method returns the last element that was inserted,
cannot be derived by the model. For example, the ADABU
model shown in Figure 2 admits nondeterministic behav-
iors, although the component is deterministic. Moreover, it
describes behaviors that do not occur in reality. For exam-
ple, it describes a sequence of push(...) followed by pop()
which yields a non-empty stack if it is applied to an empty
stack. In conclusion, behavior models are too imprecise to
be used as specifications.

In the sequel, we show how, under some loose regularity
conditions (detailed in Section 5), one can provide precise
behavior models for containers, which describe exactly all
of the component’s behaviors. To do so, we first introduce
behavioral equivalence models (BEMs), which leverage the
notion of behavioral equivalence. Figure 4 shows a BEM for
Stack. The model describes the behavior of Stack when two
strings, a and b, are used as possible storable objects, and
up to size 2. Each state of the BEM represents an abstract
state, that is, a class of behaviorally equivalent objects. For
instance, the state reached after the application of the con-
structor represents all empty stack instances. The state is
labeled with the return values of observers that characterize
the behavior of the empty stack.

Observer return values do not uniquely identify behav-
ioral equivalence classes (i.e., BEM states). For example,
starting from an empty stack, the stack obtained by first
pushing a and then b and the stack obtained by first push-
ing b and then b yield the same return values of observers.
However, the two objects are not behaviorally equivalent.
Thus, two different states (the leftmost and the rightmost
state in Figure 4) characterize the two different behavioral
equivalence classes.

The BEM in Figure 4 provides a very precise, yet incom-
plete, behavioral description of Stack. Unlike the model of
Figure 2, it shows that a push(...) operation followed by a
pop() applied to an empty stack yields an empty stack. The

432

model, however, is incomplete because (1) it defines the be-
havior of Stack for only two possible storable values (a and
b), and (2) it handles only stacks up to size 2. Because the
set of string values and the size of the stack are both finite,
Stack can be modeled by a finite-state machine. However,
for any nontrivial data abstraction (including Stack), these
constraints do not hold. First, methods can have parameter
types whose value set is theoretically infinite. Second, even
for finite sets of parameter types, the number of behavioral
equivalence classes is in theory infinite. For example, con-
sider the Stack represented in Figure 4, which only models
stacks of maximum length 2. It would be necessary to add
new states to model stacks of maximum length 3. Similar
considerations hold for any nontrivial data abstractions that
represent data containers. For all of them, we may conclude
that no finite BEM can be used to provide a precise and
complete specification.

To achieve this goal, we use a formalism that combines
BEMs with a generative mechanism. Because it is gener-
ally impossible to enumerate all BEMs extensionally, the
formalism provides generative rules that achieve the same
goal intensionally. Since BEMs are represented by graphs,
a graph transformation system (GTS) may provide such for-
malism. Before we show in detail how a GTS can solve
the problem, however, we need to address a preliminary is-
sue. The rules that define a GTS require graph nodes to
be uniquely identifiable by a label. As we observed earlier,
however, the return values of the observers associated with
each state do not uniquely identify the state. In the next
section we show how we can do so by labeling each state
with a string that represents a canonical sequence of opera-
tions that generates a representative object of the behavioral
equivalence class modeled by that state.

2.2. Labeling states by canonical terms

Each BEM state can be uniquely labeled by a represen-
tative term. A representative term for a state S is a string

NAC LHS RHS
smck()
: Stack
] size ()=0
1 C.I;’L—u” top () ~>Error
:Stack 1: null = isEmpty()=true
> CF=¢ CT=Stack()
(a) Constructor rule
NAC LHS RHS
2: String 2: String
2: String self=n self=n ()
self=n push
1:Stack :Stack]
push(m) size ()=01 size()=01 + 1
- top()=02 top()=7
: : Stack isEmpty()=03 isEmpty()=false
[M [ac] CT=ocr CT=append(ocT, push(s))
(b) Push Rule
NAC LHS RHS
pop()
1:Stack | 3:Stack | 1:Stack 3:Stack]
pop() size)=o1 size O=m1 size)=o1 size =11
o) || B | || | 0| | B
. . 1sEmpty()=o3 1sEmpty()=73 1sSEmpty()=o3 1sSEmpty()=73
[1: Stack ’ ‘ 3:Stack y CT=ocT CT=1cT CT=ccT CT=rcr
AC: ocT = append(toT, push(oz))

(c) Pop Rule

Figure 5: Stack Intensional Behavior Model

that defines a canonical sequence of invocations of opera-
tions that generates an object belonging to the behavioral
equivalence class associated with S. We call it canoni-
cal term (CT). Topologically, the CT that labels a state .S
is the concatenation of edge labels found by following a
path on the graph describing a BEM, from the initial (null)
state to S. Although in principle any sequence of opera-
tions that generates an object can be chosen to label the
state denoting the object’s behavioral equivalence class, in
practice certain terms naturally stand as candidates for CTs.
In the case of Stack, CTs can be defined as follows. For
any state S of the BEM modeling Stack, the class of behav-
iorally equivalent objects associated with S can be repre-
sented by the object obtained by invoking the constructor
followed by a sequence of push(...) operations. For exam-
ple, the CT Stack()push(b)push(b) is used to label the left-
most state in Figure 4. We consider other terms, such as
Stack()push(b)pop()push(b)push (b), which also generate a
behaviorally equivalent object for that state, not to be CTs.

The notion of a CT is reminiscent of the notion of normal
form term in algebraic specifications [22]. This issue is not
discussed here for space reasons. Formally, we can express
the set of CTs by a formal language; in the Stack example,

433

we can describe it by the following grammar:

S = ¢e|Stack()T
T = ¢e|push(x)T

where z is in the domain of strings. In general, CTs are
defined by a canonical term language L satisfying the fol-
lowing properties (¢1) and (¢3):

e (¢1): each term is composed of an initial constructor
and a —possibly empty— sequence of modifiers;

o (l3): foreveryt = u-m(p) € L, u € L; that is,
every term in the language is obtained by appending an
operation m(p) to a term u belonging to the language.
By definition, m(p) is called a canonical operation in
the context of u.

In the case of Stack, the canonical term language is a
simple regular language. This is rather an exception than the
normal case: in general, the canonical language can belong
to any class of Chomsky’s hierarchy.

2.3. Defining Bems by a GTS

Behavioral equivalence models are essentially finite-
state automata, and thus, they are graphs. A graph trans-

formation system (GTS) [11] is a formal method to express
how a class of graphs can be generated. In a previous paper,
we studied the use of GTS to specify the behavior of data
abstractions [4]: here we briefly summarize the proposal.

In a GTS, rules describe how a host graph is modified
by their application. Specifically, we use attributed GTSs as
defined in [11], where nodes and arcs are labeled with typed
attributes. As a support tool for the formal method, we use
AGG [24]. Each rule is described by three graphs, NAC,
LHS, RHS, and a set of attribute conditions AC'.

LHS, NAC, and AC define when a rule can be applied
to a source graph. LH S and N AC are graphs whose nodes
and arcs are labeled with variables on the domain of the
attributes. Roughly speaking, L H S defines a positive topo-
logical condition: it describes a subgraph that must occurr
in a source graph for the rule to be applied. Instead, N AC
expresses a negative application condition: the rule cannot
be applied if an occurrence of the N AC exists in the source
graph. Moreover, we can define mappings for nodes and
arcs in LHS, RHS and NAC by identically numbering
them in the rule. AC' is a binary predicate on variables de-
fined on the LH S attributes, which must be checked to hold
for the rule to be applied. Finally, the RH.S describes how
the graph should be transformed by the rule, with respect to
attributes and topology.

If the positive and negative applicability conditions are
verified, the rule transforms the source graph in a new
graph. Since in our setting the LH S is always a subgraph
of the RHS, the resulting graph is built by adding all the
nodes and arcs which are introduced by the RHS (i.e., all
the graph elements in the RH S that are not destinations of
mappings from the LHS). Attributes are modified accord-
ing to functions labeling nodes in the RH S.

Let us describe intuitively how the BEM of Figure 4 can
be generated by applying the rules in Figure 5. Consider a
graph containing only the null state, which conventionally
represents the state of an object before the application of
any constructor. The only applicable rule is the construc-
tor rule of Figure 5a, which contains the null state on the
LHS. Its NAC does not hold, because the null state does
not have any outgoing transition. The mapping is defined
by identically numbered nodes: the node on the LH S la-
beled with 1, representing the null state, corresponds to the
same node labeled with 1 in the RHS. The application of
RHS simply adds to it a transition labeled with the con-
structor which leads to a newly generated state represent-
ing the empty stack; this is an example of a canonical rule.
Canonical rules —that is, rules describing the application
of a canonical operation— always introduce a new node,
when applied to a graph. The node rerepresents a new state
of the BEM, corresponding to a newly introduced behav-
ioral equivalence class. It is important to observe that the
canonical language is implicitly defined by the assignments

434

to CT in the newly generated states, as defined by the RH S
of the canonical rules.

The constructor rule can only be applied once; after be-
ing applied, it is disabled by its NAC.The canonical rule
in Figure 5(b) is instead enabled, which corresponds to the
application of the push(String) operation. The rule can be
applied because the host graph contains a node matched by
its LHS. The application generates a node representing a
stack with a single element. It is then possible to apply the
rule in Figure 5(c), corresponding to a pop() operation, by
matching states 1 and 3 of the rule with the empty stack and
the stack containing a single element. This is not a canoni-
cal operation: the rule simply adds a transition to the BEM.

The intensional model can generate every possible be-
havioral equivalence class: it models the fact that any pa-
rameter of type String can be inserted in the Stack and de-
scribes the behavior of any possible sequence of operations.

3. Recovery of Intensional Behavior Models

After a brief introduction of the formal notation we use
in the specification, from now on we focus on the recov-
ery approach. First, in Section 3.1, we discuss the recovery
of BEMs; then, in Section 3.2, we illustrate how canonical
terms can be found by means of searching a shortest-path
tree on the BEM; finally, in Section 3.3, we show how to in-
fer intensional behavior models by generalizing the recov-
ered BEM.

3.1. Recovering BEMs

To generate a BEM of a given data abstraction we first
need an instance pool for every formal parameter of any
method. Second, we require the user to set an upper bound
for the number of states of the behavior model: when the
upper bound is reached, the algorithm stops producing new
states and tries to complete just the remaining missing tran-
sitions. For example, the BEM of the stack shown in Fig-
ure 4 is built by specifying an upper bound of 7 states.

The BEM is built by invoking the methods of the class,
starting from the constructors. For each constructor, we ex-
tract the return values of observers and produce states reach-
able from constructor transitions. Each next step extends
the BEM by observing the behavior of objects represented
by a previously introduced new state. Modifer methods
are applied (with parameters taken from the appropriate in-
stance pool) to all objects of the equivalence class denoted
by that state; then, observers are applied to retrieve the ob-
servable part of the state and thus possibly build new states,
until the upper bound is reached. Note that if the observ-
able part of two objects’ state is the same, the objects do not
necessarily belong to the same behavioral equivalence class.
This issue is taken up next on the example. Also note that

top()=a

isEmpty()="false isEmpty()=false

wsh(b pushid

Stack

size ()=0
top () ~ Error
isEmpty()=true

(a) Nondeterministic transitions on an ambiguous state

=

.

.

Stack Stack
size ()=2 size ()=2
top()=a top()=a

isEmpty()=false isEmpty()=false

Stack Stack
size ()=1 size ()=1
top()=b top()=a

isEmpty()=false isEmpty()=false

size ()=0
top () ~ Error
isEmpty()=true

(b) Nondeterminism resolution using a discriminating operation

Figure 6: Example of nondeterminism resolution

this discussion assumes observers to be pure. Since we do
not know if an observer is pure, whenever we invoke it we
must rebuild the original instance obtained by the method
invocation, which might have been modified by the previ-
ous observer invocation. If two instances produced by dif-
ferent invocations exhibit the same observer return values,
they are initially assigned to the same equivalence class.

Consider the Stack example in Figure 4. To build the
BEM, we first specify the instance pool for the String pa-
rameter used by the push(String) method: Igiring
{a, b}. Then we begin to observe the behavior of the com-
ponent by invoking the constructor. On the resulting ob-
ject we invoke size(), top() and isEmpty() to get the ob-
servers’ return values. At this point we can build a new state
labeled {size() = 0,top() ~ Error,isEmpty = true},
reachable from an initial transition labeled with the con-
structor. If on that object we now invoke the two possible
push(String) operations, push(a) and push(b), we reach
two different states w.r.t. the observer return values, identi-
fied as {size() = 1,top() = a,isEmpty = false} and
{size() = 1,top() = b,isEmpty = false}. In both
cases, by invoking the pop() operation we reach again the
empty stack state. Instead, if we further invoke the push(a)
operation on the objects which expose the states denoted
by size() 1, we obtain two objects which exhibit the
same observable part {size() = 2,top() = a,isEmpty =
false}. We assign them temporarily to the same equiva-
lence class, because if no other method is invoked, the two
objects are indistinguishable.

However, if we invoke the pop() operation on the two
objects, we would face nondeterminism, since both the
state denoted by {size() 1,top() = a,isEmpty
false}, and the state denoted by {size() 1,top() =
b,isEmpty = false} are reachable with the same method

435

invocation (see Figure 6a). The manifestation of nondeter-
minism indicates that the objects whose observable state is
{size() = 2,top() = a,isEmpty = false} do not belong
to the same behavior equivalence class. In fact, by invoking
observers after a pop() operation we would discover a part
of the hidden state of the component, which is different for
the two objects.

In other words, pop() is a discriminating operation for
the state denoted by {size() = 2,top() = a,isEmpty() =
false}; that is, after the application of pop() it is possible
to verify if two objects that previously exposed the same ob-
server return values are indeed behaviorally equivalent. In
this case, the states reached after the pop() operation corre-
spond to distinguishable objects. Figure 6b shows how non-
determinism can be resolved, by deriving a behavior model
where each state represents behavior equivalence classes.

Since SPY assumes that an upper bound on the num-
ber of states is initially given, in general it is not possible
to discover all the different classes of behaviorally equiva-
lent objects. In fact, the limitation implies that some states
are incomplete, and the missing transitions could be used to
discriminate between behaviorally different instances. This
problem uncovers an important feature of BEMs: in gen-
eral, transitions originating from incomplete states are un-
trustable, since the state may represent different classes of
behaviorally different instances of the data abstraction.

3.2. Identifying Canonical Terms

As we discussed in Section 2.2, canonical terms are used
to label BEM states. CTs represent behaviorally equivalent
classes of instances of a data abstraction, and they can be
defined by a suitable language £. In principle, £ should
be inferred separately and then used to label BEM states

ush(b)
ey

LHS RHS

(Stack Stack push(b)
size)=1 size)=2 (1:Stack (1:Stack (Stack
top()=a top()=b push(b) size ()=1 size ()=1 size)=2
isEmpty()=false isEmpty()=false top()=a top()=a top()=b
CT=S()p(a) '« A\ CT=S0p(a)p(b) 1: Stack Stack isEmpty()=false isEmpty()=false isEmpty()=false
pp() = CT=5()p(a) CT=5(jp(a) CT=5(Jp(a)p(b)
(a) Transitions (b) Push Rule
\
NAC LHS RHS
pop()
(1:Stack) (3:Stack (1:Stack Y [3:Stack
pop(] size 0=2 size =1 size)=2 size =1
g top()=b top()=a tp()=b top()=a
1:Stack 3:Stack isEmpty()=false isEmpty()="false isEmpty()=false isEmpty()=false
C) C) CT=S()p(a)p(b) CT=S()p(a) CT=5()p(a)p(b) CT=5()p(a)
(c) Pop Rule

Figure 7: Examples of Inference Basis Construction (= is the construction step; in CTs, Stack() is abbreviated to S() and

push(..) to p(..))

with canonical terms. However, as we saw, the canonical
language is implicitly defined by the assignments to CT at-
tributes in the RH S of canonical rules. Thus, we can treat
CTs as the other observers and we can generalize them in
the inference step discussed in Section 3.3. In this step SPY
must simply identify a set of CTs to label the states of the
BEM recovered in the previous step. These terms must sat-
isfy the two properties of canonical languages that we illus-
trated previously.

Topologically, a path on the BEM starting from the null
state corresponds to a term obtained by concatenating the
corresponding sequence of arc labels. Any path would gen-
erate a term that satisfies property (¢1) of the canonical lan-
guage (i.e., it corresponds to a sequence of method invo-
cations starting from a constructor). Property (¢2) can be
satisfied by searching a shortest-path tree (SPT) rooted in
the null state.

In fact, suppose that a positive cost is assigned to every
transition of the BEM. An SPT is a tree such that, given the
null state and any other state .S, the path from the null state
to .S in the tree is the shortest path (minimum cost) on the
BEM. A topological property of SPT is that the shortest path
from null to a state x is always built from the shortest path to
a state y reachable from x. Thus, if we label the BEM states
by using the paths from a SPT, the corresponding terms will
satisfy the second property of the canonical languages.

Since BEMs are directed graphs, given a cost assignment
to every transition, we can use the well-known Dijkstra’s
algorithm [9] to build a SPT. In principle, any cost function
for BEM transitions could be used since any SPT produces
CTs which satisfy (¢1) and (¢2). Practically, the ease of
generalization to a significant canonical language, which is
performed by SPY in the next step, might depend on which
transitions are selected.

436

To address this issue, we searched for a reasonable
heuristic cost function for BEM transitions. A natural ap-
praoch to assign a cost value to a transition is to define
a distance between the abstract objects represented by the
source and target state. Precisely, we define a distance by
extending the notion of object distance function (ODF) [6].
ODF is defined on the internal representation of the object
and captures how much the objects differ. Intuitively, in our
extension, since we use a black-box approach, we apply the
distance to the observable part of the state. An extension to
Dijkstra’s algorithm, which introduces further heuristics, is
then applied to the BEM decorated with cost values. A full
account of the computations of costs and of the extended

SPT algorithm cannot be given here for space reasons!.

3.3. Synthesizing Intensional Rules

The process of synthesizing graph transformation rules
as intensional behavior models is composed of three differ-
ent steps. First SPY builds a set of simple rules from each
transition of the source BEM. Then it computes invariants
for each rule in the inference basis. Last, rules are general-
ized if they express the same behavior.

3.3.1. The Inference Basis. In this step SPY produces the
inference basis, that is, a set of non-generalized rules from
each transition of the recovered BEM. Each rule in this set
describes only the behavior of a single transition.
Transitions on the source BEM are classified according
to the SPT. If the transition is part of the SPT, we build a
corresponding canonical rule (i.e., a rule which introduces
a new state in a BEM). Consider the BEM fragment shown

IDetails can be found at [3].

in Figure 7(a). The solid transition is a push(String) tran-
sition, and it is part of the BEM SPT. Thus, SPY builds a
new canonical rule from this transition, according to a sim-
ple construction pattern. In such a case, given a transition
labeled with a canonical operation p from a state S to a state
T, we build a rule which includes S in the LH S, the tran-
sition from S to 7" in the RHS, and a NAC which forbids
that the same rule is applied twice to the same matching
elements. Figure 7(b) shows the generated rule for the in-
ference basis. Similar rules are built for every transition
belonging to the SPT. At this point, the rules of the infer-
ence basis are able to produce the spanning tree, if applied
to a graph containing the null state.

To proceed further, SPY considers the transitions which
correspond to non-canonical operations in the source BEM.
Since new states are only generated by canonical rules, the
rules specifying the behavior of the methods that label these
transitions simply add new edges to an existing graph. For
example, consider the dashed transition in Figure 7(a), cor-
responding to a pop() method invocation. LH S contains a
pair of states (the source state of the transition and the target
state), and the RHS simply adds the pop() transition.

3.3.2. Computing invariants. In this step SPY elaborates
each rule and transforms it into a form that is suitable for
the next step, which performs actual inference through gen-
eralization. Each rule is transformed by (1) making it sym-
bolic, that is, assigning symbolic values to observer return
values and (2) identifying a set of invariant properties that
constrain symbolic values. Invariant properties are identi-
fied by following a similar approach as DAIKON [12], with
some changes that will be described later.

For both canonical and non-canonical rules, we can dis-
tinguish a source state .S and a target state 7". For canonical
rules, S is the state in the LH S and T is the newly intro-
duced state in the RHS. For non-canonical operations, S
is the state from which the generated transition exits and
T is the state in which it enters. Let m(71, 7o, ..., 7Tx) be
the operation that labels the transition from S to 7', and let
01(),02(),...,0,() be the observer methods>. The sym-
bolic transformation applied to the rule replaces the con-
crete values returned by the observers with symbolic ones:
let o;, 7; be the symbolic observer return values for o;()
for states S and T, respectively. Let oo and 7o be
the symbolic variables for the CTs of S and 7T'. State S
is now labeled with {01() = 01,02() = 09,...,0,() =
0n, CT = oot} and T is labeled with {o01() = 71, 02() =
T2y ..y 0n() = T, CT = Tor}. Similarly, concrete values
of parameters of method m(...) are replaced by symbolic
variables w1, mo, ..., ;. We keep track of concrete values

2For simplicity and space reasons we assume here that observers do not
have parameters. SPY, however, can deal with them.

437

Table 1: Symbolic Patterns for Canonical Terms

Type ‘ Pattern ‘ Description
Boolean contains(t, o) if term ¢ contains operation o
param param(t,i,j) returns 5t param of it oper-
ation in ¢
term removeAll(t,0) | removes all instances of o
term append(t, o) appends o in ¢
term appendAt(t,i,0) | appends o in t at position %
int length(t) length of ¢
int count(t, o) number of times o is contained
ont

by associating a function range g (x) to each symbolic vari-
able 'y, which maps it to the set of observed values.

Symbolic variables are then used to extract a set
of invariants which describe the behavior of the rule.
Such invariants are equalities in the form: =
flo1,...,on,00r,71,...,7),V1l < ¢ < n. SPY
is equipped with a set of symbolic patterns for func-
tions. It instantiates symbolic patterns with variables
01,y...,0n,00T,T1,...,T and generates all equality in-
variants that are satisfied by replacing variables with the
correspoding observer return values. At the end of this step,
each rule R is in symbolic form and has an associated set of
invariants . Table 1 shows some of the symbolic patterns
which involve canonical terms.

Ti

3.3.3. Rule Synthesis. This step generalizes the inference
basis by merging symbolic rules which express the same be-
havior. Let us consider two rules Ry, Ry with inviariant sets
IR, and Ig,, which express the behavior of the same oper-
ation m. If Ir, N IR, contains at least one invariant for
every o;() and for CT, then Ry, Ry are considered compat-
ible, and they can be merged. The effect of merging consist
of () eliminating one rule (say, R2), (i) associating the
new invariant set Ir; N I, to Ry, and (4i7) updating the
range functions of R; symbolic variables, that is, for every
variable x, ranger, (x) = rangeg, (x) Uranger, (x) -
For example, let R; be the rule in Figure 7(b), and
let Ry be a similar rule, with identical LH.S, describ-
ing the behavior of a push(a) operation, thus introduc-
ing a new state labeled with {top() = a,...,CT
Stack()push(a)push(a)}. The two rules are first trans-
formed into the symbolic form. The invariant set I, con-
tains 7y = 7, where 7 is the symbolic value of the top()
observer in the target state of the transition, and 7 is the
symbolic value of the parameter of push(...). Ir, includes
the previous invariant, but also an accidental one, 7, = o7y,
where o7 is the symbolic value of the top() observer in the
source state. Such invariant states that the top() observer
does not change its return value after a push(...) opera-
tion, which is accidental (it is due to the specific use of a).
IR, N I, contains at least 7; = 7; thus, the rules are com-

patible and the merge discards 71 = 0.

This approach is repeated for all pairs of rules describing
the behavior of a given operation until no mergeable pairs
exists. The approach is identical for non-canonical rules;
we start by merging compatible rules until no compatible
rule pair is present in the set of rules. At the end, we have
a reduced set of rules with equality invariants describing
their behavior. Many of the accidental invariants computed
for each rule in the inference basis step are removed by the
rule merging. A simple rewriting substep relabels T-states
in canonical rules in the form {o1() = fi(...),...,CT =
fer(...)}, where f; corresponds to the syntactically short-
est equality invariant for observer o;() in the invariant set.
For non-canonical rules, the equality invariants are simply
considered as application conditions of the rule, since S and
T are both included in the LH S.

Finally, we can extract the likely application conditions
of each rule. They are a set of predicates involving only
O1y.++50n,00T,T1,...,Tk, and they are discovered with
the same methodology described before, that is, by consid-
ering only functional patterns returning booleans, and range
functions of symbolic variables.

4. Related Work

The techniques for recovering specifications from an ex-
isting application can be roughly classified in two cate-
gories. Specifications may be extracted through static anal-
ysis of code or through dynamic analysis. In the former
case, classical program analysis techniques are used to ex-
tract a higher level view of the component behavior [21, 23].
Static analysis is a white box technique, since it assumes the
source code to be available.

Dynamic analysis techniques are based on observing the
execution traces and abstracting them by producing some
higher level description. Although the field is relatively
new, a number of approaches have already been explored,
such as [12, 8, 16, 5]. Dynamic analysis techniques can be
black box if the run-time observations are only made by ob-
serving the values that flow in and out when public methods
are called. SPY focuses exactly on this approach.

A few approaches have been developed for specification
recovery of data abstractions implemented as JAVA classes.
HEUREKA [16] can retrieve algebraic specifications, by
finding equations among sequences of operations, and then
generalizing them by substituting concrete variables by uni-
versally quantified free variables, thus producing axioms.
HEUREKA uses a black-box technique based on dynamic
analysis: the tool can only observe the external behavior
of the component whose specification must be inferred. In
order to produce equations, the tool checks for behavioral
equivalence.

438

A different approach to specification recovery of state-
ful components is based on behavior models. We already
mentioned ADABU [8], which can infer nondeterministic fi-
nite state machines describing sequences of the operations.
Each state is identified by a predicate on the return values
of pure observers, and each transition corresponds to the ap-
plication of a modifier. The identification of each state with
a limited part of the observable state of the component leads
to an overapproximation of the behavior of the component.

Other approaches, such as [25], can provide more precise
behavior models. In [13] we show how to infer more precise
behavior models, and we use them to improve the perfor-
mance of HEUREKA. In both these approaches, the abstrac-
tion function on the observers’ return values is not fixed but
can be customized by the user. Despite this improvement,
all of these approaches still identify each state with nothing
more than the complete observable part, thus leading to ap-
proximations of the same kind of ADABU. Objects which
expose the same return values of the observers might still
be behaviorally different: for this reason, even these more
precise models may include nondeterministic transitions.

In the end, HEUREKA (and the optimization we proposed
in [13]) stands as the best possible competitor of our ap-
proach. The next section provides a quantitative assessment
of our method with respect to HEUREKA.

5. Empirical Assessment

In a traditional setting, the problem of comparing a spec-
ification against an implementation assumes that the speci-
fication provides prescriptive description of the correct be-
havior that an implementation must satisfy. The goal of
verification is to check the implementation against possible
violations of the specification. In the case of specification
recovery, the issue is reversed: we must verify that the re-
covered specification is correct with respect to an existing
implementation. In the case of black box recovery, like SPY
and HEUREKA, we can invoke the implementation and use
it as an oracle to check if inferred behavior is exposed by
the implementation. Ideally, a recovered specification is a
correct description of an implementation if it is able to give
a correct answer for all the possible behaviors. Practically,
for each possible behavior given in terms of a predicted re-
turn value for a sequence of method invocations ending with
an observer, the recovered specification might (¢) correctly
describe the behavior; (i7) predict a wrong behavior, or (4i%)
be unable to give an answer.

In general, any inference method makes assumptions un-
der which it can generalize its findings from a number of
observations. It assumes that the inference basis is signifi-
cant with respect to the global behavior of the component;
that is, the observed behaviors expose sufficient information
to capture all behaviors of the component. For example,

Table 2: Empirical Results

Class Inference Basis | # axioms ‘ # rules ‘ Testing Basis ‘ Theureka | 'Tsry | THeureka | Tspy

& Stack 67789 6 5 0.6 - 108 0% 0% 0% 0%
Z Queue 58452 7 5 0.6 - 106 0% 0% 0% 0%
2 Min-MaxSet 188462 12 6 1.9-10° 0% 0% 35.38 % 0%
: MTS 2.2 106 40 11 1.3-107 0% 0% 45.80 % 0%
© SymbolTable 70347 18 8 7.2-106 0% 0% 59.03 % 0%
" Stack 118516 12 5 1.3-106 0% 0% 0% 0%
2 ArrayList 866663 107 14 1.3-106 0% 0% 31.20 % 0%
& ArrayDeque 0.9 - 108 142 23 1.3-107 0% 0% 32.15 % 0%
= TreeSet 499316 89 14 9.2 106 0% 0% 64.32 % 0%
2 TreeMap 397178 128 13 8.4-106 0% 0% 36.41 % 0%
% LinkedList 1.1-108 139 27 1.2-107 0% 0% 43.24 % 0%
" PriorityQueue 334071 52 13 3.4-106 0% 0% 44.81 % 0%

Amazon SQS | 20760 | 7 | 5 | 41530 | 0% | 0% | 0% | 0%

SPY assumes that the behavior of the component exposed
by the use of parameters from the instance pool can be gen-
eralized to any possible value for the corresponding actual
parameters of methods. This means that the behavior of the
component does not change significantly for unobserved be-
haviors given by parameters outside the instance pool. Sec-
ond, it assumes a continuity property; that is, the behav-
ior observed during the generation of the BEM, in terms
of state transitions and modification of observer return val-
ues, is generalizable also for unobserved behavior. These
assumptions are not SPY specific, but they are critical for
every specification recovery approach: if they do not hold,
generalizations predict wrong behaviors. The inference ba-
sis also influences the complexity of our approach, which is
function of the number of BEM transitions and states.

Let us consider the problem of comparing two specifi-
cations S7 and So, coming from two different specification
recovery methods M7 and Ms, against the same implemen-
tation . First, for the comparison to be fair, M; and M,
should use the same significant inference basis. Second,
since it is impossible to check S7 and S5 against every pos-
sible behavior of I, we need to select a common set of test
cases, called the test basis, to compare the recovered speci-
fications; for the check to be fair, test case selection should
not depend on the method. In the end, S; is “better” than
So w.rt. I if the number of test cases giving a correct an-
swer is greater for S than for S;. To resolve the first is-
sue (fair inference basis), we use the same instance pools
to recover both algebraic specifications with HEUREKA and
intensional behavior models with our approach; moreover,
we set the number of states in the recovered BEM in a way
such that the total number of test cases in the inference ba-
sis with our approach is strictly contained in the one used
by HEUREKA. Second, to obtain a fair test basis, we ran-
domly generate a set of instance pools to test the recovered
specifications and then generate exhaustively a set of terms,

439

ending with an observer, up to a certain length of method
invocations.

We applied both HEUREKA and SPY to three different
sets of classes implementing data abstractions. The first set
includes simple data abstractions, such as Queue, Stack, and
more complex and critical ones, such as MinSet, MaxSet,
SymbolTable and Majster’s Traversable Stack (MTS) [19].
MinSet and MaxSet are simple ordered sets exposing only
one observer, returning the minimum and the maximum
element, respectively: these abstractions are important to
check the benefits of our approach in cases where the ex-
posed part of the internal state is very limited (i.e., just
an observer). Another tested data abstraction is the MTS,
which is essentially a stack with an operation to iterate on
the contained objects. The second set of data abstraction
is taken from the java. util package from the OPENJDK 7
project [2], and includes almost all collections from the
package. Third, we applied our method to a web service,
the Amazon Simple Queue Service (SQS) [1]. Table 2 sum-
marized the empirical results of the comparison between
HEUREKA and SPY. Details on the inference basis, test ba-
sis, results, and comparisons can be found at [3]; the com-
plete recovered specifications are also omitted for space rea-
sons, but they are included in the website. Column 1 lists
the class name; column 2 contains the number of test cases
used by both methods as inference basis. Column 3 and 4
give a hint on the conciseness of the recovered specifica-
tions in terms of the number of inferred axioms or rules.
Column 5 contains the number of test cases used to check
the adherence of the recovered specification to the class im-
plementation. The last four columns share the following
format: for each method = € {SPY, HEUREKA}, !T}, con-
tains the percentage of test cases on which the specification
recovered by x predicted a wrong behavior, while 77}, con-
tains the percentage of test cases on which the specification
was unable to give an answer. The lower those values are,

the better the specification adheres to the class implemen-
tation. By careful inspection of Table 2, the reader can see
that, under the aforementioned assumptions, SPY performs
consistently better than HEUREKA.

6. Conclusions and Future Work

This paper describes SPY, a new approach to recov-
ering specifications for data abstractions implemented as
JAVA classes. SPY infers models by following a prede-
fined black-box strategy that generates method invocations
through which the component is exercised and observes
input/output relationships. We described how SPY infers
an intensional generalization of behavior models via graph
transformation that specify the behavior of the data abstrac-
tions. The SPY method is based on the empirical observa-
tion that in many practical cases components follow a kind
of “uniform behavior” law. This of course cannot be proven
in general, but it held in most practical cases for which we
made experiments. SPY is supported by a prototype tool
that can be downloaded to experiment with black-box spec-
ification recovery. The prototype has been used for an as-
sessment of the method for non trivial data abstractions,
collections from the JAVA library, and the Amazon Queue
Service. In all these cases, we observed that the method in-
fers high quality specifications, far more precise than those
that could be inferred by previously published methods. Fu-
ture work will continue to extend the SPY approach to other
kinds of software components, especially in the context of
open an dynamic environments, such as SOAs.

Acknowledgments

This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom.

References

[1] Amazon Simple Service.
http://aws.amazon.com/sqs/.

OpenJDK project. http://jdk7.dev.java.net/.

Spy website. http://home.dei.polimi.it/mocci/spy/.

L. Baresi, C. Ghezzi, A. Mocci, and M. Monga. Using graph
transformation systems to specify and verify data abstrac-
tions. In Proc. of GT-VMT’08, Electronic Communications
of the EASST, Volume X (2008), 2008.

L. C. Briand, Y. Labiche, and Y. Miao. Towards the reverse
engineering of UML sequence diagrams. In Working Conf.
on Reverse Engineering, pages 57-66, 2003.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Object distance
and its application to adaptive random testing of object-
oriented programs. In RT°06: Int. workshop on Random

testing, pages 55-63, New York, NY, USA, 2006. ACM.

Queue

(2]
(3]
(4]

(5]

(6]

440

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(7]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

(25]

C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: dy-
namic symbolic execution for invariant inference. In Int.
Conf. on Software engineering, pages 281-290, New York,
NY, USA, 2008. ACM.

V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining object behavior with Adabu. In Int. Wks. on Dy-
namic Analysis, May 2006.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, pages 269-271, 1959.

R. Doong and P. G. Frankl. The ASTOOT approach to test-
ing object-oriented programs. ACM Transactions on Soft-
ware Engineering and Methodology, 3(2):101-130, 1994.
H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Funda-
mentals of Algebraic Graph Transformation. EATCS Mono-
graphs in TCS. Springer, 2005.

M. D. Ernst. Dynamically Discovering Likely Program In-
variants. Ph.D. thesis, University of Washington, Seattle,
Washington, Aug. 2000.

C. Ghezzi, A. Mocci, and M. Monga. Efficient recovery
of algebraic specifications for stateful components. In Int.
Wks. on Principles of Software Evolution, Dubrovnik, Croa-
tia, Sept. 2007.

J. V. Guttag and B. Liskov. Program Development in
Java: Abstraction, Specification and Object-Oriented De-
sign. Addison-Wesley, 2001.

D. Harel and E. Gery. Executable object modeling with stat-
echarts. In Int. Conf. on Software Engineering. IEEE, 1996.
J. Henkel, C. Reichenbach, and A. Diwan. Discovering doc-
umentation for Java container classes. IEEE Trans. Software
Eng., 33(8):526-543, 2007.

M. N. Huhns and M. P. Singh. Service-oriented comput-
ing: Key concepts and principles. IEEE Internet Computing,
9(1):75-81, 2005.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation
for detailed design. In Behavioral Specifications of Busi-
nesses and Systems, pages 175-188. Kluwer, 1999.

M. E. Majster. Limits of the “algebraic” specification of
abstract data types. SIGPLAN Notices, 12(10):37-42, 1977.
B. Meyer. Design by Contract: The Eiffel Method. In Int.
Conf. on Technology of Object-Oriented Languages and Sys-
tems, 1998.

R. O’Callahan and D. Jackson. Lackwit: A program un-
derstanding tool based on type inference. In Int. Conf. on
Software Engineering, pages 338-348, 1996.

M. J. O’Donnell. Computing in Systems Described by Equa-
tions. Springer-Verlag, 1977.

A. Rountev and B. H. Connell. Object naming analysis
for reverse-engineered sequence diagrams. In International
Conference on Software Engineering, pages 254-263, 2005.
G. Taentzer. AGG: A graph transformation environment
for modeling and validation of software. In Application of
Graph Transformations with Industrial Relevance, volume
3062 of LNCS, pages 446—456. Springer, 2004.

T. Xie, E. Martin, and H. Yuan. Automatic extraction of
abstract-object-state machines from unit-test executions. In
Int. Conf. on Software Engineering, Research Demos, pages
835-838, May 2006.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Carlo Ghezzi
