MINTS: A General Framework and Tool for
Supporting Test-suite Minimization

Hwa-You Hsu and Alessandro Orso
College of Computing - Georgia Institute of Technology
{hsulorso}@cc.gatech.edu

Abstract

Test-suite minimization techniques aim to eliminate re-
dundant test cases from a test-suite based on some crite-
ria, such as coverage or fault-detection capability. Most
existing test-suite minimization techniques have two main
limitations: they perform minimization based on a single
criterion and produce suboptimal solutions. In this paper,
we propose a test-suite minimization framework that over-
comes these limitations by allowing testers to (1) easily en-
code a wide spectrum of test-suite minimization problems,
(2) handle problems that involve any number of criteria, and
(3) compute optimal solutions by leveraging modern integer
linear programming solvers. We implemented our frame-
work in a tool, called MINTS, that is freely-available and
can be interfaced with a number of different state-of-the-art
solvers. Our empirical evaluation shows that MINTS can
be used to instantiate a number of different test-suite min-
imization problems and efficiently find an optimal solution
for such problems using different solvers.

1 Introduction

When developing and evolving a software system, a
common practice is to build and maintain a regression test
suite, a test suite that can be used to perform regression
testing of the software after it is changed. Regression test
suites are an important artifact of the software development
process and, just like other artifacts, must be maintained
throughout the lifetime of a software product. In particular,
testers often add to such suites test cases that exercise new
behaviors or target newly-discovered faults. As a result, test
suites tend to grow in size over time and may become too
large to be run in their entirety [10].

In some cases, the size of a test suite is not an issue (e.g.,
when all test cases can be run quickly and in a fully auto-
mated way). In other cases, however, having a large test
suite can make regression testing impractical. This is the
case, for instance, for large test suites that requires manual
work to be run (e.g., to check the outcome of the test cases
or setup some machinery).

Researchers have proposed several approaches to address
this issue and either select, prioritize, or minimize the test
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cases in a regression test suite (e.g., [7, 13-18,20]). Test-
suite minimization, in particular, aims to reduce the size of a
test suite according to some criteria specified by the testers.
For example, a tester may want to generate a test suite with
maximal coverage, maximal fault detection capability, and
minimal setup cost. Due to the computational complex-
ity of multi-criteria minimization, however, most existing
techniques target a much simpler version of the problem:
generating a test suite that achieves the same coverage as
the original test suite with a minimal number of test cases
(e.g., [7,14,17,20]).

Although these techniques work well for the simpler
problem they address, they are likely to generate test suites
that are suboptimal with respect to other criteria. Previous
research has shown, for instance, that the error-revealing
power of a minimized test suite can be considerably less
than that of the original test suite [14, 20]. Furthermore,
because even single-criterion versions of the minimization
problem are NP-Complete (see Section 2.2), most existing
techniques are based on heuristics and approximated algo-
rithms; they trade accuracy for efficiency and compute so-
lutions that are suboptimal even for the simplified version
of the minimization problem they target.

To address the shortcomings of existing techniques, we
propose a test-suite minimization framework that has three
main advantages over previous minimization approaches.
First, it allows for easily encoding a wide range of test-suite
minimization problems. Second, it can accommodate min-
imization problems that involve multiple criteria and, thus,
allow testers to encode all of the constraints that they per-
ceive as relevant. Third, it can produce solutions for test-
suite minimization problems that are optimal with respect
to all criteria involved.

Intuitively, our approach is based on (1) providing testers
with a flexible way of specifying multi-criteria test-suite
minimization problems and (2) encoding such problems and
related criteria as binary integer linear programming (ILP)
problems [6]. We defined our encoding so that it can be fed
directly to one or more ILP solvers. If the solvers are able
to compute a solution for the problem, such a solution cor-
responds to the minimized test suite that satisfies all of the
considered criteria. To the best of our knowledge, the only



other technique that can handle more than one criterion and
compute optimal solutions is the one proposed by Black and
colleagues [4]. However, their technique is limited to two
criteria and cannot be straightforwardly extended to a larger
number of criteria. Moreover, our technique gives testers
more expressiveness in defining and combining their mini-
mization criteria.

Our framework and approach are implemented in a tool
called MINTS (MINimizer for Test Suites), whose modu-
lar architecture allows for plugging in different ILP solvers.
More precisely, MINTS can be transparently interfaced with
any binary ILP solver that complies with the format used in
the Pseudo Boolean Evaluation 2007 [12].

Using MINTS, we performed an empirical evaluation of
our approach on a set of real programs (and correspond-
ing test suites) and for a number of test-suite minimiza-
tion problems; we used MINTS to find an optimal solution
for the considered problems leveraging different state-of-
the-art solvers, including both SAT-based pseudo-Boolean
solvers and simplex-based linear programming solvers, and
assessed its performance. The results of our evaluation pro-
vide initial evidence that the approach is practical and effec-
tive: for all problems considered, MINTS was able to com-
pute an optimal solution in just a few seconds.

This paper provides the following contributions:

A general test-suite minimization framework that handles
minimization problems involving any number of criteria
and can produce optimal solutions to such problems.

A prototype tool that implements the framework, can in-
terface seamlessly with a number of different ILP solvers,
and is freely available.

An empirical study in which we evaluate the approach
using a wide range of programs, test cases, minimization
problems, and solvers.

2 Motivating scenario

In this section, we introduce a motivating example con-
sisting of a typical test-suite minimization scenario and dis-
cuss the limitations of existing approaches in handling such
a scenario. We also use the example in the rest of the paper
to illustrate our approach.

2.1 Test-suite minimization scenario

Consider a program P and an associated regression test
suite 7' = {t;}. Assume that the team in charge of testing P
decides that 7" has become too large and wants to produce a
minimized test-suite MT C T. As it is typically the case,
we also have a set R of testing requirements for P. Whether
the requirements in R are expressed in terms of code cover-
age, functionality coverage, or coverage of some other en-
tity of relevance for the testing team is inconsequential for
our approach. What matters is that 7" achieves some cover-
age of R. For this example, we assume to have a single set
of requirements expressed in terms of statement coverage.
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Assume also that the testing team is interested in three
additional aspects of the test suite: (1) the total time re-
quired to execute MT’; (2) the setup effort involved in run-
ning MT (e.g., the number of man-hours required to set
up an emulator for missing parts of the system under test);
and (3) the (estimated) fault-detection capability of MT'. (A
common way to compute this value is to associate with each
test case a fault-detection index based on historical data, that
is, based on how many unique faults were revealed by that
test case in previous versions of P.) In our scenario, the test-
ing team’s goal is to produce a test suite M 7" that maintains
the same coverage as the original test suite 7", minimizes the
total time and setup effort, and maximizes the likelihood of
fault detection.

Our example contains all of the elements of a typical
minimization problem: a set of test-related data and a set
of minimization criteria defined by the testing team. We
list such elements and make the example more concrete by
instantiating it with a specific set of values, as follows:

Test-related data

e The test suite to minimize: T' = {t1,t2,t3,t4}
e The set of requirements: R = {r1,72,r3}

e Coverage, cost, and fault-detection data:

[ & [ta [t [ta]

stmitq X X

stmia X | X

stmts X X
[ Timetorun [22 [ 4 [16] 2]
l Setup effort [ 3 [ 0 [ 11 [ 9 ‘
| Fault detection | 8 | 4 [ 10 ] 2 |

Minimization criteria

Criterion #1: maintain statement coverage
Criterion #2: minimize time to run

Criterion #3: minimize setup effort

Criterion #4: maximize expected fault-detection

As the data shows, T’ contains four test cases, and R con-
tains three requirements (for the sake of space, we consider
a trivial program with three statements only). The table
provides information on statement coverage, running time,
setup effort, and fault-detection ability for each test case in
the test suite. For example, test case ¢ covers statements
stmt; and stmty, takes 22 seconds to execute, has a setup
cost of three (i.e., it takes three man-hours to setup), and
has a fault-detection ability of eight (i.e., it revealed eight
unique faults in previous versions of P). The four criteria
define the constraints for the minimization problem.

2.2 Complexity of minimization problems

Minimization problems are NP-complete because they
are in NP and there is a polynomial-time reduction from



the minimum set-cover problem to such problems [17].
We illustrate this point for single-criterion minimization
problems—minimization problems that involve only one set
of requirements and one criterion. Consider, for instance, a
typical minimization problem whose goal is to produce a
test suite that contains the minimal number of test cases that
achieve the same coverage as the complete test suite. Let us
define cr(t) as the set of requirements covered by test case
t (i.e, cr(t) = {r € R|t covers r}) and CovReq as the
set of all requirements covered by T (i.e., CovReq = {r €
R|3teT, re€cr(t)}), with CovReq C R. By definition,
foreach t € T, er(t) C CovReq. Therefore, the solution
of the test-suite minimization problem is exactly a minimum
set cover for CovReq—a subset S of {cr(t) | t € T} such
that (1) every element in C'ov Req belongs to at least one of
the sets in .S and (2) |.S| is minimal. Multi-criteria minimiza-
tion problems can be reduced from the set-cover problem in
a similar fashion.

As we stated in the Introduction, due to the complexity
of the test-suite minimization problem most existing min-
imization techniques focus exclusively on single-criterion
minimization problems (e.g., [7, 14,17,20]). By doing so,
these techniques force testers to disregard important dimen-
sions of the problem and are likely to generate test suites
that are suboptimal with respect to such dimensions. For in-
stance, they may generate test suites that contain a minimum
number of test cases but have a longer running time than
other possible minimal test suites. Or they may generate
test suites that have minimal running time but have a con-
siderably reduced fault detection ability [14,20]. Moreover,
because even single-criterion problems are NP-complete, as
we demonstrated above, most of these existing techniques
are based on approximated algorithms that make the prob-
lem tractable at the cost of computing suboptimal solutions.

To allow testers to compute minimized test suites that are
optimal with respect to all of the parameters they consider
relevant, we propose a general framework for encoding and
solving test-suite minimization problems. In the next two
sections, we first discuss the state of the art and then intro-
duce our approach.

3 Related work

For efficiently computing near-optimal solutions to the
single-criterion test-suite minimization problem, several
heuristics have been proposed. Chavatal [5] proposes the
use of a greedy heuristic that selects a test case that covers
most yet-to-be-covered requirements until all requirements
are satisfied. Harrold and colleagues [7] propose a similar,
but improved heuristic that generates solutions that are al-
ways as good or better than the ones computed by Chavatal.
Agrawal [1] and Marre and Bertolino [11] propose a dif-
ferent approach: they identify the set R; C R such that if
every requirement in R, is covered by a test suite, then ev-
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ery requirement in R will also be covered by that test suite.
In [17], Tallam and Gupta classify these latter heuristics as
exploiting implications among coverage requirements (or
attribute reductions), and Chavatal’s and Harrold and col-
leagues’ heuristics as exploiting implications among test
cases (or object reductions). They propose another heuris-
tic, called Delay-Greedy, which combines the advantages
of both types of heuristics. Delay-Greedy works in three
phases: (1) apply object reductions (i.e., remove test cases
whose coverage of test requirements is subsumed by other
test cases); (2) apply attribute reductions (i.e., remove test
requirements that are not in the minimal requirement set);
and (3) build a reduced test suite from the remaining test
cases using a greedy method. Their experiments show that
the reduced test suites generated by Delay-Greedy are at
least as good as the ones generated by previous approaches.
All of these approaches suffer from both of the shortcom-
ings that we discussed in the previous section: they focus
on a single criterion and compute approximated solutions.

Both Rothermel and colleagues [14] and Wong and
colleagues [20] empirically investigated the limitations of
single-criterion minimization techniques. Specifically, they
performed experiments to assess the effectiveness of min-
imized test suites in terms of their fault-detection ability.
Their results show that the minimized test suites generated
using a single-criterion technique may detect considerably
fewer faults than complete test suites.

The approach by Jeffrey and Gupta [8] addresses the
limitations of traditional single-criterion minimization tech-
niques by considering multiple sets of testing requirements
(e.g., coverage of different entities) and introducing selec-
tive redundancy in minimized test suites. Although their
approach improves on existing techniques, it is still heuris-
tic. A better attempt at overcoming the limitations of exist-
ing approaches is the technique proposed by Black and col-
leagues [4], which consists of a two-criteria variant of tra-
ditional single-criterion test suite minimization approaches
and computes optimal solutions using an integer linear pro-
gramming solver. Also in this case, the approach can han-
dle only limited kind of minimization problems. Our ap-
proach extends and generalizes these existing techniques so
as to still be able to compute optimal solutions while letting
testers specify (1) any number of minimization criteria and
(2) how to combine, weight, or prioritize these criteria.

4 Our approach
4.1 Overview

Figure 1 provides a high-level view of our minimization
framework as implemented in our MINTS tool. As the figure
shows, MINTS takes as input a fest suite, a set of test-related
data, and a set of minimization criteria and produces a min-
imized test suite—a subset of the initial test suite computed
according to the specified criteria.
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The set of test-related data can include many different
types of data (e.g., coverage data, various cost data, fault-
detection data). In general, our framework allows testers to
provide any set of data of interest to them. For example,
testers may provide data about the last time each test case
was run, information that could be used to favor the inclu-
sion in the minimized test suite of test cases that have not
been executed recently [9].

The minimization criteria are specified by the testers and
consist of two main parts. The first part is a set of one or
more criteria, each of which defines either a constraint or
a sub-goal for the minimization (e.g., minimizing the test-
execution time). The second part is a minimization policy
that specifies how the different sub-goals should be com-
bined to find an optimal minimal test suite. Currently, our
technique supports three different minimization policies:
weighted, prioritized, and hybrid. (We describe these three
policies in detail in Section 4.3.)

Our approach takes the set of criteria specified by the
testers, combines them according to the associated mini-
mization policy, and transforms them into a binary integer
linear programming (ILP) problem. A binary ILP prob-
lem consists of optimizing a linear objective function in
which all unknown variables can only have values O or 1
while satisfying a set of linear equality and inequality con-
straints [19]. Binary ILP problems are also called pseudo-
Boolean problems [2]. We discuss our encoding approach
in Section 4.4.

After encoding the minimization problem as a binary ILP
problem, our approach feeds the resulting problem into one
or more back-end ILP solvers. The solvers either return an
optimal solution or stop after a given timeout. If an opti-
mal solution is found, our approach reports to the testers the
minimized test suite corresponding to that solution. Oth-
erwise, it reports the partial results obtained by the solvers
and notifies the user that no optimal solution was found. Al-
though finding a solution to a binary ILP problem is an NP-
complete problem, latest-generation ILP solvers have been

Minimized
Test suite
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successful in finding solutions to such problems efficiently,
thanks to recent algorithmic advances and implementation
improvements [12].

In the rest of this section, we first discuss the different
types of minimization criteria supported within our frame-
work; we then present the three minimization policies that
our framework provides; finally, we illustrate in detail our
approach for modeling such minimization criteria and poli-
cies as binary ILP problems and for computing optimal so-
lutions to the minimization problem.

4.2 Minimization criteria

In our framework, each minimization criterion involves
one set of test-related data and is one of two kinds: abso-
lute or relative. An absolute criterion, such as Criterion #1
in our example, is one that introduces a constraint for the
minimization problem. In this case, the set of test-related
data involved is statement coverage data, and the constraint
is that the minimized test suite must have the same coverage
as the complete test suite. An absolute criterion corresponds
to a linear constraint in a binary ILP problem. A relative
criterion introduces an objective rather than a constraint for
the minimization problem, such as Criteria #2, #3, and #4
in our example. In the case of Criteria #2, for instance, the
set of test-related data involved is test timing data, and the
objective is to minimize the testing time. A relative crite-
rion corresponds to an objective function in a binary ILP
problem.

Note that each type of test-related data set can be used
in both relative and absolute criteria. For example, although
coverage data are typically used in absolute criteria, nothing
prevents testers from defining a relative criterion that intro-
duces the maximization of coverage as an objective. Analo-
gously, timing data could be used to define an absolute cri-
terion in cases where amount of time that can be allocated
to the testing process is limited.

4.3 Minimization policies

When performing multi-criteria test suite minimization,
it is typically the case that more than one criterion is a rela-
tive criterion and, thus, more than one objective is specified.
In these cases, testers can define how the different objec-
tives should be combined by specifying a minimization pol-
icy. Our framework provides three different minimization
policies: weighted, prioritized, and hybrid.

The weighted minimization policy allows testers to asso-
ciate a relative weight to each objective. Such weight de-
fines the extent to which that specific objective will affect
the solution and lets testers put different emphasis on differ-
ent criteria based on their perceived importance. We use our
example to illustrate. Assume that, for instance, the testers
have very limited man-power and are thus mostly concerned
with reducing the setup effort. In such a case, they could as-
sign a weight of .8 to Criterion #3 and a weight of .1 to



Criteria #2 and #4.! In this way, the solution will be skewed
in favor of Criterion #3. However, test cases that are slightly
worse according to Criterion #3, but considerably (an order
of magnitude, in this case) better according to Criteria #2
and/or #4 may still be selected.

The prioritized minimization policy allows testers to
specify in which order the different objectives in a mini-
mization problem will be considered. Unlike the weighted
policy, in which all objectives are weighted differently but
considered at once, the prioritized policy considers one ob-
jective at a time. Intuitively, a prioritized policy first com-
putes the set S; of optimal solutions for the objective with
the highest priority. Then, if S; is not empty, it computes
the set of optimal solutions S C S for the objective with
the second highest priority. The process continues until all
of the objectives have been considered. Considering again
our example, a tester may assign Criterion #3 priority one,
Criterion #2 priority two, and Criterion #4 priority three. In
that case, our technique would first try to compute the set
of solutions S; that minimize the setup effort while provid-
ing the same level of coverage as the complete test suite,
then compute subset Sz of S; with minimal testing time,
and finally compute the subset S35 of S5 with maximal fault
detection. In this case, test cases that are worse according to
Criterion #3 would never be selected over better test cases
for that criterion, regardless of how much better they are
according to Criteria #2 and/or #4.

Finally, the hybrid minimization policy combines the
two former policies. Testers can divide objectives into
groups, weigh the set of objectives within each group, and
assign a priority for each group. In this case, our approach
would consider each group of objectives a single objective
function, given by the weighted combination of the objec-
tives in the group, and process the different groups in order
based on their assigned priority.

4.4 Modeling multi-criteria minimization
as binary ILP problems

As we discussed in Section 4.1, our framework encodes
test-suite minimization problems in terms of binary ILP
problems and then leverages ILP solvers to compute an op-
timal solution to such problems. Test-suite minimization
problems are amenable to being represented as binary ILP
problems. (1) A minimized test suite M T for a test suite T’
can be encoded as a vector of binary values o, of size |T|, in
which a 1 (resp., 0) at position ¢ in the vector indicates that
the i'" test case in T'is (resp., is not) in MT'; (2) minimizing
| MT| means minimizing the number of 1s in o and can be
expressed as a binary integer linear objective function; and
(3) each criterion can be presented as a linear equality or in-
equality constraint. More precisely, we represent inputs and
outputs of our problem as follows.

IWithout loss of generality, weights are normalized to 1 to make their
relative nature explicit.
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Test suite: 7' = {¢t;}

Test-related data: Each type of test-related data set can be
represented as a set of values associated with the test
cases in 7T'. Therefore, we represent test-related data as
an n x |T'| matrix, where n is the number of types of
test-related data: test-related data = {d;;}, 1 < i <
n, 1 < j < |T|. We represent a single type x of test-
related data (i.e., a row in the test-related data matrix)
asavector d, = {d, ;}, 1 <j < |T|

Minimized test suite (output): OUT = {o;}, 1< i < |T],
in which o; = 1 if test case ¢; is in the minimized test
suite, o; = 0 otherwise.

Minimization criteria (absolute): We express an absolute
criterion involving the i" type of test-related data as a
constraint in the form Zl | 1 di jo; ® const, in which @
is one of the binary operators <, <, =, >, or >, and
const is a constant value.

Minimization criteria (relative): Similar to what we do
for absolute criteria, we express a relative criterion in-
volving the i'" type of test-related data as an objec-
tive that consists of either maximizing or minimizing
the following expression: Zlf;'l norm(d; ;)o;, in which
norm(d; ;) is the value of d;; normalized such that
ZITll norm(d; ;) = 1.

Minimization pohcies: The encoding of minimization
policies is fairly straightforward. A weighted policy is
expressed as a set of weights, {«;}, one for each relative
minimization criterion. A prioritized policy is encoded as
a function that maps each relative minimization criterion
to an integer representing its priority. Finally, a hybrid
policy is encoded as a partition of the relative minimiza-
tion criteria plus a function that maps each set in the par-
tition to an integer representing its priority.

We now discuss how this encoding lets us model the
test-minimization problem as a set of pseudo-Boolean con-
straints. If the tester defines n relative minimization criteria
involving test-related data d,, to d,_, specifies m absolute
minimization criteria involving test-related data d, to d,,
and uses a weighted policy, the resulting encoding is in the
following form:?

minimize
T
Y ey
under the constraints
T
Z‘ ! 1 dy,,505 © const
Z‘ ‘ 1 dys,505 © consta

L norm(dy; j)o;

T
S d

Ym,j 0 @ CONStm

2Note that in the following formulation, c; is positive or negative, de-
pending on whether the corresponding criterion involves a minimization or
a maximization, respectively.



This formulation expresses the minimization problem as
an optimization problem in which the objective function
is the expression to be minimized and is defined in terms
of OUT—all other values (i.e., d;j, o, and const;) are
known. This encoding can be fed into a binary ILP solver,
which would try to find a solution consisting of a set of as-
signments of either O or 1 values to each 0o; € OUT. The
set of test cases defined as {t; | o; = 1} would then cor-
respond to the optimal minimized test suite for the initial
minimization problem.

In the case of a prioritized policy, the situation would be
similar, but the solution would be computed in stages. More
precisely, the formulation would consist of a list of objective
functions, one for each relative criterion, to be considered in
the order specified by the tester.

The first optimization would invoke the solver to mini-
mize the first objective function,

T .
ZL:‘I norm(dg, ;)o;, under the constraints

|| |T|
Zj:l dy,,j0; © consti, ..., Zj:l dy,,,;05 B constp,.

If the solver found a solution, our technique would then save
the (minimal) value of leTzll norm(dy, j)o;, correspond-
ing to the solution valj .

Our technique would then perform a second invocation
of the solver to minimize the second objective function,

|T] .
ijl norm(dy,,;)o;, under the constraints

1T ||
ijl dy, ,j0; ® consty, ..., ijl dy,,.j0; D consty,

Z‘],T:‘l norm(dz,,;)0; = valy.

Notice how the set of constraints now includes an additional
constraint that encodes the result of the first optimization.
Intuitively, this corresponds to finding a solution for the
second optimization problem only among the possible so-
lutions for the first problem, as we discussed in Section 4.1.
Again, our technique would then save the minimal value of
the objective function corresponding to the solution found
by the solver, if any, and use it to create an additional con-
straint. Our technique would continue in this way until ei-
ther the solver cannot find a solution or the last optimization
has been performed. At this point, a solution for the last op-
timization, in terms of values of elements of OUT, would
correspond to the minimal test suite for the initial minimiza-
tion problem.

The computation of a solution in the case of a hybrid
policy derives directly from the previous two cases. The so-
lution is computed in stages, as for the prioritized policy,
but each objective function corresponds to a set in the parti-
tion of relative criteria and involves a set of weights for the
relative criteria in the set.

To illustrate with a concrete example, we show how our
approach would operate for the minimization scenario that
we introduced in Section 2.1:
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T = {t1,ta,t3,ta}

10110
1 {1100
Ojo| 11
o Test-related data = 2141161 2
3101119
8 | 4|10 |2

Criterion #1:

ijl di,joj =01+032>1

Zj:l d27j0j =o01+02>1

ijl dg,jOj =o03+o04>1

Criterion #2:

minimize 23:1 norm(ds,;)o; = .501 +.102 +.3603 +.0404
Criterion #3:

minimize Z;Zl norm(da,;)o; = 1301 + .4803 + .3904

Criterion #4:
maximize ijl norm(ds,;)o; = .301+.1T02+.4203+.0804

Given this encoding, if we consider the case of a tester
who specifies a weighted minimization policy with weights
0.1, 0.8, and 0.1 for Criteria #2, #3, and #4, respectively, we
obtain the following encoding:

minimize
0.1(.501+.102+.3603+.04O4)+0.8(.1301+.4803+.39O4)—
0.1(.301 + 1709 + 4203 + .0804)

under the constraints
o1+o03>1,0104+02>1,03+042>1

This encoding can be fed into a binary ILP solver, and the
solution to the problem, if one is found, would consist of a
set of assignments of either 0 or 1 values to oy, ..., 04. Such
a solution identifies a test suite that solves the minimization
problem described in the scenario. The test suite, defined as
{t; | 0; = 1}, would be in this case test suite {to, t3}.

5 Empirical evaluation

To assess the practicality of our approach, we performed
an empirical evaluation involving multiple versions of sev-
eral software subjects, a number of minimization problems,
and several ILP solvers. In our evaluation, we investigated
the following research questions:

RQ1: How often can MINTS find an optimal solution for a
test-suite minimization problem in a reasonable time?
RQ2: How does the performance of MINTS compare with

the performance of a heuristic approach?

RQ3: To what extent does the use of a specific solver affect
the performance of the approach?

Sections 5.1 and 5.2 present the software subjects that we
used in the study and our experimental setup. Section 5.3
illustrates and discusses our experimental results.



Table 1. Subject programs used in the empirical study.

Subject Description LOC Cov # Test Cases | # Versions
tcas Aircraft altitude separation monitor 173 72 1608 5
schedule2 Priority queue scheduler 307 146 2700 5
schedule Priority queue scheduler 412 166 2650 5
tot_info Information measure 406 136 1052 5
replace String pattern match and replace 562 263 5542 5
print_tokens Lexical analyzer 563 194 4130 5
print_tokens2 | Lexical analyzer 570 197 4115 5
flex Fast lexical analyzer generator 12421 567 548 5
LogicBlox Sales prediction system 570595 29204 393 5
Eclipse Java IDE 1892226 | 35903 3621 5

5.1 Experimental subjects

Table 1 provides summary information about our ten
subject programs. For each program, the table includes a de-
scription, the program size in terms of non-comment lines
of code, the number of lines of code covered by the pro-
gram’s test suite, the number of test cases in the program’s
test suite, and the number of faulty versions of the program
that we considered. For all entries in Table 1, if the val-
ues differ in different versions of a subject, we use median
values.

The first seven subjects, from print_tokens to tot_info,
consist of the programs in the Siemens suite, which we
downloaded from the software-artifact infrastructure repos-
itOI'y (SIR) at UNL (nttp://sir.unl.edu/php/index.php). We
selected these programs because they have been widely used
in the testing literature and represent an almost de-facto
standard benchmark. In addition, and most importantly,
they are available together with extensive test suites and
multiple versions. For each program, the set of versions
includes a golden version and several faulty versions, each
containing a single known fault. In our studies, we consid-
ered the last five versions of each program.

The programs in the Siemens suite, albeit commonly
used, are small programs, ranging from 173 to 570 lines
of code. Therefore, to increase the representativeness of our
set of subjects, we included three additional programs with
real faults: flex, LogicBlox, and Eclipse. Program flex, also
available from SIR, contains several real faults that can be
individually switched on or off. We chose to seed faults
in flex in a way that mimics a realistic scenario, where new
faults are introduced by revisions, and not all faults are fixed
going from one version to the next. More precisely, we built
five faulty versions of flex, fI through f5, containing ten,
seven, five, three and one fault, respectively. Faults in ver-
sion fn include both new faults and faults already present
in version f(n—1), as shown in Table 2. (In the table, faults
are identified using a unique fault id.)

LogicBlox (nttp://www.logicblox.com) 1S a sales predic-
tion system for retailers that consists of one million lines
of source code written in different languages: C++, C#,
Python, and Java. Developers of LogicBlox built an ini-
tial set of unit tests for the program while developing it and
added new test cases to the test suite during maintenance.
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Table 2. Faults seeded in the versions of flex.

Version New Faults Id Existing Faults Id
f1 2,3,6,7,8,12, 14,16, 17, 18
f2 11, 15 3,7,8,12, 14
f3 1,4 3,12, 15
f4 5 115
f5 1

For our experiments, we used five versions of the Java part
of LogicBlox together with its developer-provided regres-
sion test suite.

Eclipse (nttp://www.eclipse.org) is a widely used and ex-
tensible IDE, under which different features are provided by
means of plug-ins. Each release of Eclipse includes its core
plug-ins and tests suites for such plug-ins. In our study, we
used five versions of Eclipse core (from 3.0.1 to 3.1.2) and
their test suites.

5.2 Experimental setup

Test-related data. In our studies, we considered test-
related data similar to the ones that we used in our ex-
ample of Section 2.1: code coverage, running time, and
fault-detection ability. We collected these data by execut-
ing each version of each subject program against its com-
plete test suite. To measure coverage, we used the GNU
utility Gcov, for C programs, and COBERTURA (http:
//cobertura.sourceforge.net), for Java programs. To collect
the execution time, we used the UNIX time utility. Finally,
we gathered fault-detection data for version n of a program
by identifying which test cases revealed at least one fault in
version n — 1 of that program. Because all programs come
with a golden version, we could identify failures by simply
comparing the output of the golden version with the output
of a faulty version when they are executed against the same
test case.

Minimization criteria. We consider one absolute mini-
mization criterion and three relative minimization criteria.
The absolute minimization criterion corresponds to Crite-
rion #1 in our example: the minimized test suite should
achieve the same code coverage as the complete test suite.
The three relative minimization criteria consist of (1) min-
imizing the number of test cases in the test suite, (2) min-
imizing the execution time of the test suite, and (3) maxi-
mizing the number of test cases that are error revealing.



Minimization policies. We considered eight different
minimization policies: seven weighted and one prioritized.
The weighted policies consist of one policy in which all
three relative minimization criteria are assigned the same
weight and six policies in which the weights are 0.6, 0.3,
and 0.1 and are assigned to the different criteria in turn. The
prioritized policy orders the criteria by minimizing the size
of test suite first, minimizing the execution time second, and
maximizing the fault-detection capability last.

Solvers considered. For our experiments, we inter-
faced our MINTS tool with six different ILP solvers.
Four solvers are SAT-based pseudo-Boolean solvers:
BSOLO (http://sat.inesc-id.pt/bsolo), MINISAT+ (http:
//minisat.se/MiniSat+. html), OPBDP (http ://www.mpi-inf.
mpg.de/departments/d2/software/opbdp ), and PBS4 (nttp:
//www.eecs.umich. edu/’”faloul/Tools/prll). We chose this
set of pseudo-Boolean solvers based on their performance
in the Pseudo Boolean Evaluation 2007 [12]. The other
two solvers, which are not based on a SAT engine, are
CPLEX (http://www.ilog.com/products/cplex) and GLPPB
(http://www.eecs.umich.edu/~faloul/Tools/pbs4). CPLEX is
a generic solver for large linear programming problems that
was also used in previous work [4], whereas GLPPB is a
pure ILP solver. We ran all solvers except CPLEX on Linux,
on a 3 Ghz Pentium 4 machine with 2 GB of RAM running
RedHat Enterprise Linux 4. Because we have a Windows-
only license for CPLEX, we ran it on a Windows XP machine
with a 1.8 GHz Pentium 4 CPU and 1 GB of RAM.

Overall, our experiments involved 400 different mini-
mization problems. For each of the problems, we provided
input data to our MINTS tool, which encoded the data as a
binary ILP problem (see Section 4.4) and fed the problem to
the different solvers. To provide data to the solvers, MINTS
used the OPB format [12]. (For CPLEX, which uses a pro-
prietary format, we built a filter that transforms the OPB
format into the format used by CPLEX.)

In a normal usage scenario, MINTS would submit the
problem to all solvers and return a solution as soon as one of
the solvers terminates—because the solvers compute only
exact solutions, waiting for additional solvers to terminate
would simply result in solutions equivalent to the one al-
ready obtained. For our experiments, however, to gather
information about the performance of different solvers, we
executed all solvers either to completion or until a four-hour
time threshold was reached.

5.3 Results and discussion

RQ1 - How often can MINTS find an optimal solution to
a test-suite minimization problem in a reasonable time?

To answer RQ1, we first analyzed the data collected in our
experiments and determined how many of the 400 mini-
mization problems considered MINTS was able to solve op-
timally (i.e., at least one of the solvers was able to compute
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a solution). Next, we measured how long it took MINTS to
compute such solutions. Figure 2 shows the results of this
analysis using a bar chart with bars of alternating colors to
improve readability. The bar chart contains a bar for each of
the minimization problems considered, grouped by subject.
Within subjects, the entries are in turn grouped by version:
the first eight entries for a subject correspond to the results
for the seven weighted policies plus the prioritized policy
when applied to Version 1 of the subject; the second eight
entries correspond to analogous results for Version 2; and so
on. The height of a bar represents the amount of time that
it took MINTS to compute a solution for the corresponding
minimization problem. For example, it took MINTS slightly
more than one second to solve the first minimization prob-
lem involving subject schedule.

In the figure, we ordered the subjects based on their com-
plexity indicator, where the complexity indicator for subject
s is computed as s’s size multiplied by s’s number of test
cases. We define the complexity indicator this way because
(1) the number of test cases for a subject defines the number
of variables involved in the minimization problem, and (2)
the size of the subject affects the number of constraints in
the problem. Therefore, the product of these two values for
a subject can be considered an indicator of the complexity
of the minimization problems involving that subject.

As the results in Figure 2 show, MINTS was able to find
an optimal solution for all of the minimization problems in
at most forty seconds. Moreover, in most cases, the solu-
tion was computed in less than two seconds. Even for the
most complex minimization problem—the ones involving
Eclipse—MINTS computed a solution in less than ten sec-
onds for most minimization problems.

We also observe that, for some subjects, some problems
are solved either considerably faster or considerably slower
than the other problems involving the same subject. Inter-
estingly, we found that both cases correspond to minimiza-
tion problems involving a prioritized policy. Our conjecture,
partially confirmed by our investigation of a subset of these
cases, is that this behavior is due to two conflicting factors.
On the one hand, in the case of weighted policies, MINTS
combine all criteria and then feeds the resulting combined
criterion to the underlying solvers. The solvers are likely
to take a longer time to solve this combined, more complex
criterion than to solve any of the original single criteria. On
the other hand, in the case of prioritized policies, MINTS
finds optimal solutions for one criterion at a time, which
involves multiple interactions with the underlying solvers
(three interactions for the three-criteria minimization prob-
lems considered in our study). In other words, weighted
policies involve a single optimization of a more complex
problem, whereas prioritized policies involve several opti-
mizations of simpler problems. The relative importance of
these factors varies depending on the subject, and so prob-
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Figure 2. Timing results for MmINTS when applied to the 400 minimization problems considered.

lems involving weighted criteria are solved faster than prob-
lems involving prioritized criteria for some subjects (e.g.,
tcas), and slower for others (e.g., tot_info).

Another set of results that deserve further investigation
are the ones for subject flex. Whereas the performance of
MINTS is fairly similar across the different versions of the
seven Siemens programs, for flex we can observe a higher
variability. In particular, the eight minimization problems
involving the second version of the subject (eight to 15"
bars in the section of flex in the bar chart) were all solved in
about 0.3 seconds, a much shorter time than that required for
most of the other problems involving flex. A more in-depth
analysis of the data revealed that the specific combination
of faults in that version of flex caused an early termination
of the program. Therefore, most test cases in the test suite
of flex covered only the same few statements in that version,
which resulted in a small number of constraints for the min-
imization and in an easy-to-find solution (because, from a
coverage standpoint, most test cases are equivalent).

Finally, we observe that there seems to be a fairly strong
correlation between the complexity of a subject, defined ear-
lier in this section, and the time required to solve minimiza-
tion problems involving that subject. This correlation can
be observed by remembering that the subjects are ordered
by increasing complexity index and by noting how the solu-
tion time for the subjects grows almost monotonically while
going from left to right in the chart. We also note that, al-
though the cost of the approach grows with the size of the
problem, such growth appears to be almost linear, which is
encouraging in terms of scalability of the approach.

We realize that using lines of code and number of test
cases as a measure of complexity is a gross approximation,
for several reasons. First, the number of constraints in the
minimization problems we consider depends on the num-
ber of statements covered by the complete test suite, and
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not on the total number of statements, as demonstrated by
the results for the second version of flex discussed above.
Second, the characteristics of the test suites, such as the
amount of redundancy among test cases, are likely to have
a considerable effect on the results. Finally, the perfor-
mance of ILP solvers depends on many characteristics of
the optimization problem that go beyond the sheer size of
the data sets [3]. Nevertheless, our results provide at least
initial evidence that the approach can scale. Additional evi-
dence is provided by results of the Pseudo Boolean Evalua-
tion 2007 [12], in which some of the solvers involved were
able to compute optimal solutions in a handful of minutes
for problems with more than 170,000 constraints (which,
in our context, corresponds to the number of requirements)
and more than 75,000 variables (number of test cases, in our
context).

In summary, although more empirical studies are needed
to confirm our results, we believe that such results are
promising, show the potential effectiveness and efficiency
of our approach, and motivate further research.

RQ2: How does the performance of MINTS compare
with the performance of a heuristic approach?

To answer RQ2, we cannot simply apply existing heuris-
tic approaches to the 400 minimization problems consid-
ered in our study and evaluate their performance; such ap-
proaches, as we previously discussed, cannot handle multi-
criteria minimization problems. We therefore first defined
a set of simpler minimization problems analogous to the
single-criteria ones used in previous work (e.g., [7,17]).
Our problems consisted of computing, for all five versions
of each of our subjects, a minimized test suite that maintains
the same coverage level as the original test suite.

We then implemented the algorithm by Harrold, Gupta,
and Soffa (HGS hereafter) [7] and compared the perfor-



Table 3. Sizes of minimized test suites gener-
ated by HGs and MINTS

LogicBlox | Original test HGS MINTS Difference
version suite size
vl 255 223 218 5
v2 393 392 390 2
v3 393 392 390 2
v4 395 394 392 2
v5 395 394 392 2
Eclipse Original test HGS93 MINTS Difference
version suite size
3.0.1 2460 656 418 238
3.02 2467 651 423 228
3.1 3621 851 553 298
3.1.1 3681 833 532 301
3.1.2 3681 656 406 250

mance of HGS and MINTS on this set of single-criterion min-
imization problems. We chose HGS as a representative of
heuristic approaches because it is a well-known and com-
monly cited algorithm. Moreover, it is fairly simple to im-
plement, which eases experimentation and reduces the risks
of introducing errors in its implementation.

To compare the performance of the two techniques, we
measured both the time necessary for MINTS and HGS to
solve the problems and the size of the resulting minimized
test suites. Both techniques were able to solve each problem
in fractions of a second, with MINTS being faster than HGS
in some cases. Given the imprecision of the UNIX time util-
ity, and the fact that we are using our own implementation of
HGS, we can consider the two techniques to have analogous
performance with respect to time.

As far as the sizes of the minimized test suites are con-
cerned, MINTS and HGS generate the minimized test suite
of the same size for the the Siemens subjects and flex. In
other words, the heuristic solutions happen to be optimal
for these subject programs. For LogicBlox and Eclipse,
however, MINTS always generates minimized test suite with
smaller sizes than the ones generated by HGS. The differ-
ence is marginal in the case of LogicBlox, but considerable
for Eclipse. Table 3 shows the results of the comparison
in terms of sizes of the minimized test suites computed by
MINTS and HGS for LogicBlox and Eclipse. (We do not re-
port the results for the Siemens programs and flex because,
as stated above, they are the same for the two techniques.)

Overall, these results show that, for the subjects and test
suites considered, our approach performed as well or better
than state-of-art heuristic technique. In addition, our tech-
nique can handle a wider range of minimization problems
and computes optimal rather than approximated solutions.

RQ3: To what extent does the use of a specific solver
affect the performance of the approach?

Because MINTS can feed each minimization problem to a
number of solvers, the performance of the individual solvers
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Table 4. Performance of the different ILP
solvers. Note for some problems, multiple
solvers report solutions in the same time

MINISAT+ GLPPB OPBDP BSOLO PBS4 CPLEX
# times 35 64 1 65 26 217
fastest
# times 119 33 70 22 102 0
timed-out
or crashed

is unimportant as long as at least one solver can compute a
solution efficiently. However, assessing which ILP solvers
are more suitable for test-suite minimization problems may
provide useful insights for improving the approach and con-
ducting future research. To gather this information, we ex-
amined the data produced by MINTS during the minimiza-
tion process and identified how many times each solver was
the fastest in producing a solution and how many times each
solver reached our time threshold without producing a solu-
tion at all. This is information is indicated in Table 4.

As the table shows, the performance of the difference
solvers varies considerably. Interestingly, most solvers pro-
duced the fastest solution in a number of cases but timed
out in many other cases. A study of the finer-grained re-
sult data revealed that solvers tend to perform consistently
across different versions of the same subject but may be-
have quite differently across subjects. Some solvers, such as
GLPPB and CPLEX, performed extremely well for all prob-
lems, with response times often in the single digits. BSOLO
also performed fairly well in most cases, although it was
not able to complete within the time limit for some of the
problems involving a prioritized policy. The performance
of MINISAT+, PBS4, and OPBDP was in many cases dis-
appointing in that they did not terminate before the time
limit for minimizations that were completed in a few sec-
onds by other solvers. Moreover, OPBDP crashed in some
of the minimization problems regarding Eclipse test suite.

As discussed in [3], pseudo-Boolean solvers use differ-
ent techniques to prune the search space, which can be more
or less appropriate for a specific problem. Since the best
performing solvers for our problem—GLPPB, CPLEX, and
BsoLO—all utilize cutting-planes approaches, we conjec-
ture that such approaches are more suitable to the charac-
teristics of the test-suite minimization problem than the ap-
proaches based purely on SAT solving used in most other
pseudo-Boolean solvers.

Further analysis of the performance of the various ILP
solvers is beyond the scope of this paper and could repre-
sent interesting future work. As far as this work is con-
cerned, our results provide evidence that, although the per-
formance of the different solvers varies across subjects, a
test-suite minimization approach that relies on ILP solvers
can be practical, especially if it can leverage several solvers
in parallel, as MINTS does.



Threats to validity. The main threat to the external va-
lidity of our results is the fact that we considered only
ten applications and related test suites; experiments with
additional subjects may generate different results. How-
ever, most of the applications we used in our evaluation are
real programs, with real test cases, coming from different
sources, and used in many previous studies. Threats to in-
ternal validity involve possible faults in the implementation
of our tool or of the underlying solvers. To mitigate this
threat, we spot checked a large number of results and care-
fully examined results obtained on a set of test programs.

6 Conclusion and future work

Test-suite minimization techniques can reduce the cost
of regression testing by eliminating redundant test cases
from a test suite based on some criteria. Unfortunately,
test-suite minimization is an NP-complete problem, so most
existing techniques (1) target simpler versions of the mini-
mization problem and (2) are based on heuristic algorithms
that compute approximated, suboptimal solutions. To ad-
dress these limitations of existing techniques, we proposed
a framework that lets testers specify a wide range of multi-
criteria test-suite minimization problems and computes op-
timal solutions for such problems by encoding them as bi-
nary ILP problems and leveraging modern ILP solvers. We
also presented a tool, MINTS, that implements our approach
and is available for download (http://www.cc.gatech.
edu/~orso/software.html). Finally, we presented a set
of empirical results that show that our approach is practi-
cal and effective. Using MINTS, we were able to compute
optimal solutions for 400 minimization problems involving
eight different subjects. Our results also show that, for the
cases considered, our approach can be as efficient as heuris-
tic approaches while computing optimal solutions.

We are currently considering several directions for future
work. First, we will perform additional empirical studies
with more subjects to further assess the scalability of our
approach. It is worth noting that, due to the intimate con-
nection between the characteristics of a minimization prob-
lem and the performance of a solver on that problem, eval-
uating our approach using randomly generated large data
sets would be unlikely to provide any meaningful informa-
tion. Instead, we will collect larger programs together with
test cases and test-related data and replicate our experiments
on such subject programs and data. Our current results are
promising in terms of scalability, and we hope to confirm
these results in future studies.

We will also further analyze our results to get more in-
sights on the reasons for the variance in the performance of
different solvers. We believe that a deeper understanding
of this issue may help improve our approach and possibly
provide interesting data for the developers of such solvers.

Another direction for future work is the investigation of
ways to extend our approach to test-case prioritization—
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the identification of the ordering of test cases in a test suite
that maximizes their likelihood of detecting faults early. In
our preliminary investigation we discovered that, because
of the NP-hard nature of prioritization problems, straight-
forward extensions of our approach would not work in this
context, and more sophisticated (or alternative) approaches
are needed.
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