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Abstract

Pre/post condition-based specifications are common-
place in a variety of software engineering activities that
range from requirements through to design and implemen-
tation. The fragmented nature of these specifications can
hinder validation as it is difficult to understand if the spec-
ifications for the various operations fit together well. In
this paper we propose a novel technique for automatically
constructing abstractions in the form of behaviour mod-
els from pre/post condition-based specifications. The level
of abstraction at which such models are constructed pre-
serves enabledness of sets of operations, resulting in a fi-
nite model that is intuitive to validate and which facilitates
tracing back to the specification for debugging. The paper
also reports on the application of the approach to an indus-
trial strength protocol specification in which concerns were
identified.

1. Introduction

Pre/post condition specifications constitute good prac-

tice in a variety of software engineering activities [16].

In requirements engineering they provide the link between

declarative high-level system goals, and operational re-

quirements for the software-to-be [21]. Use case specifi-

cations, which are popular in development processes such

as RUP are also equipped with pre and postconditions. In

design, the notion of design by contract [14] is underpinned

with pre/post conditions. At the code level, the use of asser-

tions to verify at run-time pre/post conditions is considered

good-practice [17].

A pair pre/post condition constitutes a specification that

is local to a specific operation (method, procedure, use case,

event, etc). The precondition is an assertion that is expected

to hold before the occurrence of the operation, the postcon-

dition is an assertion that is guaranteed to hold after the oc-

currence of the operation if the precondition held before the

occurrence. Although writing the pre/post condition for an

operation requires expertise, it is a comparably simple task

compared with writing pre/post conditions for a set of re-

lated operations. Ensuring that the pre/post conditions of a

set of operations of an API are correct requires a cohesive

model of how the various pre/post conditions should fit to-

gether. Validating a use case model requires understanding

how the various use-cases can be combined to provide (and

only provide) the expected software-wide requirements.

Behaviour models such as finite state machines and ac-

tion machines [9] are well founded formalisms that allow

describing the temporal relation between the occurrence of

events. Depending on the context of use, these events can

be interpreted in various ways such as operations, meth-

ods, procedures. Behaviour models are used in require-

ments engineering for providing the expected behaviour of

the software-to-be or of external agents that interact with it.

These models are also used to explain the expected usage

of an API, the expected communication protocol between

processes, or to provide an abstract view of the state space

of a system and how various operations affect it.

Behaviour models are a popular target for synthesising

fragmented behaviour information. They can be synthe-

sised from requirements specifications [11], use cases, and

scenarios [22]. Their intuitive graphical representation and

their executable semantics makes them good choices for

validation. The aim of this work is to support validation
of software engineering artifacts that rely on pre/post con-
ditions as a means for specification by automated construc-
tion and tool-supported analysis of behaviour models.

In this paper we propose a novel technique for construct-

ing behaviour models from contract specifications, i.e. op-

erations specified with pre- and post conditions. Given a

contract, the resulting behaviour model is an abstraction of

all possible implementations that satisfy the contract. The

level of abstraction chosen to construct the behaviour model

can be seen as a generalisation of the pre/post condition

philosophy: A precondition describes the state in which a

specific operation is permissible, we are interested in cap-
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CircularBuffer

variable a array of integers

variable wp, rp integer

inv 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3
start |a| > 3 ∧ rp = |a| − 1 ∧ wp = 0

action write(integer n)
pre (wp < rp− 1) ∨ (wp = |a| − 1 ∧ rp > 0)

∨ (wp < |a| − 1 ∧ rp < wp)
post rp′ = rp ∧ (wp < |a| − 1 ⇒ wp′ = wp + 1)

∧ (wp = |a| − 1 ⇒ wp′ = 0)
∧ (a′ = updateArray(a, wp, n))

action integer read()
pre (rp < wp− 1) ∨ (rp = |a| − 1 ∧ wp > 0)

∨ (rp < |a| − 1 ∧ wp < rp)
post rv = a[rp′] ∧ wp′ = wp ∧ a′ = a

∧ (rp < |a| − 1 ⇒ rp′ = rp + 1)
∧ (rp = |a| − 1 ⇒ rp′ = 0)

Figure 1. Specification of a circular buffer

turing the precondition for each arbitrary set of operations.

In other words, each state in the resulting behaviour model

should characterise the condition for which a subset of the

specified operations is enabled; this means that the invariant

of the state is the conjunction of the preconditions enabled

at that state.

The models constructed by the approach described

herein can be used to validate contract pre/post-condition-

based specifications through inspection, animation, simula-

tion, and model checking. We believe, and our experience

so far confirms, that the criteria chosen for abstraction fa-

cilitates validation and debugging. Firstly, because a for-

mal and intuitive correspondence exists between the state

space of the behaviour model and that of the artefact being

specified, furthermore, that correspondence is structured in

a way that can be easily traced back to the original specifica-

tion: Not only does each state in the behaviour model repre-

sents an invariant expressed in terms of the variables, pred-

icates and propositions that appear in the specification (and

hence constructing concrete scenarios from abstract ones is

straightforward), but also, the invariants are expressed as a

conjunction of preconditions, each of which is a building

block of the specification being validated (and hence facili-

tating the identification of problematic operations).

In summary, the contributions of this paper are i) a def-

inition of finite state abstraction of a pre/post-condition-

based specification, ii) the notion of enabledness preserving

abstraction as an adequate level of abstraction to support

contract validation, iii) a prototype implementation that

constructs enabledness preserving abstractions from con-

tracts, and iv) the validation of an industrial strength proto-

col specification in which our approach supported the iden-

tification of a number of ambiguities and inconsistencies.

The rest of this paper is organised as follows. We be-

gin with a motivational example that informally introduces

the concept of contract validation via finite state abstrac-

tions (Section 2). We continue with the formal definition of

contracts, contract implementations and finite state contract

abstractions (Section 3). We then introduce the notion of en-

abledness equivalence and enabledness-preserving contract

abstractions (Section 4). Subsequently, we report on a pro-

totype implementation of our approach and the validation

of the tool and approach on three case studies (Section 5).

Finally, we discuss related work (Section 6), ideas for future

work (Section 7) and conclusions (Section 8).

2. Motivation

In this section we illustrate the difficulties of validating

pre/post-condition specifications using a toy example in or-

der to motivate our approach.

Consider the specification of a circular buffer given in

Figure 1. The specification includes three state variables:

a represents an integer array with slots that the buffer uses

for storing data, wp is a pointer to the first available slot

for storing new data, and rp is a pointer to the last slot from

which data was read. The idea is that wp points to a slot fur-

ther ahead than the slot pointed to by rp and that the slots

in between are those that have been written but not yet read.

Of course, the fact that this is a circular buffer makes the

notion of “further ahead” slightly more complicated to ex-

press formally. The specification includes pre and postcon-

ditions for two actions applicable to circular buffers: read
and write. Writing requires the buffer to have empty slots

and results in a circular buffer that has incremented by one

its writing pointer unless it has reached size, case in which

the writing pointer is set to 0. Reading requires the buffer to

have slots with unread data and updates its reading pointer

using the same strategy as write uses for wp. Finally, the

specification includes an invariant which requires the circu-

lar buffer to have more than three slots for storing data and

requires both pointers to be within the bounds of the circu-

lar buffer, i.e. between 0 and size, and there is a condition

over the acceptable starting states for circular buffers.

Given the circular buffer specification, how can we vali-

date if it corresponds to our mental model of what a circu-

lar buffer is? A traditional approach is to establish relevant

declarative properties that should be satisfied by the speci-

fication. For instance, we could postulate:

1. Initially, the read action is enabled after the first

write action occurs.

2. Either a write or a read action can be performed at

any given moment.

3. The read operation is always enabled after any (pos-

itive) number of write operations.

4. The write operation is always enabled after any (pos-

itive) number of read operations.
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Figure 2. Circular buffer finite abstraction

The process of verifying these properties has a num-

ber of difficulties. Properties must be formalised and a

formal reasoning framework which can accommodate the

properties together with the specification must be identi-

fied. Having done this, the actual reasoning to establish

correctness of the specification with respect to the prop-

erties is complex because it involves combining the vari-

ous elements present in the specification such as the pre

and postconditions of different actions, invariants and ini-

tial states. For example, to informally prove that the first

property holds we must use the initial state condition to in-

fer that wp = 0 ∧ rp = |a| − 1, which makes the precon-

dition of write valid. Then we must use the postcondition

of write to show that wp = 1 after it’s execution. Finally

we have to prove that wp = 1 ∧ rp = |a| − 1 is enough

to force the precondition of the read action. Even after the

non-trivial process of proving all of the desirable proper-

ties that we can think of, the question of whether the set of

properties used for verification is correct and complete re-

mains. Have we formalised the properties accurately? Have

we included all the relevant properties?

We believe that automated construction of abstractions

that consolidate pre/post condition specifications into one

cohesive behaviour model can complement existing tech-

niques providing support for further analysis and valida-

tion of pre/post specifications. Consider, for instance, the

behaviour model shown in Figure 2 of the circular buffer

specification which abstracts away the size of the buffer

and brings an infinite state space down to only three states.

Transitions between states show the applicability of circu-

lar buffer actions depending on its state. The behaviour

model allows an engineer to validate in a very simple way

the specification against his or her mental model of the cir-

cular buffer. The model conveys very clearly that there are

three relevant abstract states of circular buffers which re-

late to whether the buffer is empty, full, or neither: State

0 represents a buffer in which we can write but we cannot

read, state 1 allows both actions to be performed and state 2
allows reading only.

Consider the write-labelled transition from state 1 to

0. This transition is suspicious as writing data into a non-

empty buffer should not lead to a state that models empty

buffers. Similarly, the transition from the state 1 (non-

full) to state 2 (full) on label read also looks suspicious.

ExtendedCircularBuffer
...

inv 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3...
action reset()

pre true
post rp′ = wp ∧ wp′ = wp ∧ a′ = a

Figure 3. Circular buffer with reset

These transitions suggest that there could be something in

the specification that is not entirely accurate or correct.

To understand why these suspicious transitions appear in

the behaviour model it is important to understand the ab-

straction relation between the model in Figure 2 and the

specification. The concrete states of the circular buffer are

formally abstracted to get the model in that figure according

to following invariants:

• State 0: inv ∧ write_pre
• State 1: inv ∧ write_pre ∧ read_pre
• State 2: inv ∧ read_pre
Let us now try to understand why the transition labelled

write from states 1 to 0 appears in Figure 2 and if this

is signalling a problem in the specification. The fact that

the transition is enabled in state 1 follows directly from the

choice of level of abstraction of Figure 2. State 1 models

all the states of circular buffers in which both read and

write are enabled. So the question to answer is why can

write can lead to state 0, question which leads write’s

postcondition. The question can be answered by asking how

can the invariant of state 0 hold if the invariant of state 1
holds and action write occurs; question which can be eas-

ily answered automatically with appropriate tool support: If

rp = wp holds on top of the invariant for state 0, then the

postcondition for write leads to state 0.

It turns out that the invariant for circular buffers was

missing the condition rp �= wp. The amended specification

would yield an abstract behaviour model without the two

suspicious transitions we described. It is interesting to note

the subtlety of this error: The completed invariant is guaran-

teed to be true by the initial predicate and the postconditions

of the two circular buffer actions. Any sequence of actions

starting from the initial state guarantees rp �= wp yet the

omission becomes a problem if the buffer is extended with

legal operations (those that preserve the incomplete invari-

ant) such as the specification shown in Figure 3.

In summary, the example above illustrates how the de-

piction of an abstract model that integrates the various

pieces of information that appear in a contract specification

supports validation of such specifications and aids identify-

ing potential problems it may have. Furthermore, the spe-

cific choice of level of abstraction of the model, and the

traceability of the abstraction to the specification helps iden-

tifying and fixing problems in the latter. In the rest of the
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paper we present a novel technique to automatically con-

struct abstract behaviour models like the one in Figure 2

from contracts such as the ones depicted in Figures 1 and 3.

3. Finite State Contract Abstractions

In this section we define the formal underpinnings of the

problem we want to solve: finding a finite abstraction of a

contract. Firstly, we define contracts and their meaning as

a set of acceptable implementations. Then, we define ab-

stractions as a finite state machine which is able to simulate

any valid implementation of the protocol.

We call P (X) the set of first order predicates whose free

variables are included in X . We will use the operator X ′ to

refer to the set of variables {x′ | x ∈ X }.

Definition 1 (Contract). A structure of the form C =
〈V, inv, init, A, P, Q〉, is called a contract when:

• V is a finite set of variables.

• inv ∈ P (V ) is the system invariant.

• init ∈ P (V ) is the initial predicate.

• A = {a1, . . . , an} is a finite set of action labels.

• P : A → P (V ∪ {p}) is a total mapping that assigns
a precondition for each of the action labels. Note that
the distinguished variable p stands for the name of any
action parameter1.

• Q : A → P (V ∪ V ′ ∪ {p}) is a total mapping that
assigns a postcondition for each of the action labels,
where v′ stands for the new value of the variable v
after an action execution.

Formally, the specification given in Figure 1 denotes the

contract C = 〈V, inv, init, A, P, Q〉 where:

V = {a, rp, wp}
inv = 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3
init = |a| > 3 ∧ rp = |a| − 1 ∧ wp = 0
A = {read,write}

1For the sake of simplicity, and without loosing generality, we set the

number of parameters to 1. More parameters could be accommodated by

thinking of p as the name of a n-uple.

Pwrite = (wp < rp− 1) ∨ (wp = |a| − 1 ∧ rp > 0)
∨ (wp < |a| − 1 ∧ rp < wp)

Qwrite = rp′ = rp ∧ (wp = |a| − 1 ⇒ wp′ = 0)
∧ (wp < |a| − 1 ⇒ wp′ = wp + 1)
∧ (a′ = updateArray(a, wp, n))

Pread = (rp < wp− 1) ∨ (rp = |a| − 1 ∧ wp > 0)
∨ (rp < |a| − 1 ∧ wp < rp)

Qread = ∃ rv
(
rv = a[rp′] ∧ wp′ = wp ∧ a′ = a

∧ (rp < |a| − 1 ⇒ rp′ = rp + 1)
∧ (rp = |a| − 1 ⇒ rp′ = 0)

)
Notice that the translation is straightforward except for

the return values, which are existentially quantified in the

postcondition. We do not take into consideration the return

values because we are only interested in the effects that the

actions have on the system variables.

On the other hand, contract implementations will be de-

fined on top of what we call Data State Machine (which is

a sort of simplified version of an Action Machine [9]). Data

State Machines have states labelled by mappings from vari-

able names to a given value domain while transitions are

labelled with actions together actual parameter values.

Definition 2 (Data State Machine (DSM)). A structure of
the form I = 〈V, D, A, S, S0, Δ〉, is called Data State

Machine when:
• V is a finite set of variable names.
• D is a value domain.
• A is a set of action labels.
• S is a set of functions from V to D (i.e. S ⊆ V → D).
• S0 ⊆ S is the set of initial states.
• Δ : S ×A×D → ℘(S) is a transition function.
Now we define an implementation of a contract as a

DSM that satisfies the contract:

Definition 3 (Contract Implementation). Given a contract
C = 〈V, inv, init, A, P, Q〉, a value domain D and an
interpretation Dop for the symbols appearing in predi-
cates. We say that a Data State Machine of the form
I = 〈V, D, A, S, S0, Δ〉 is an implementation for the

contract C under the interpretation 〈D, Dop〉 iff the follow-
ing hold:

1. V ⊇ V , D = D, A = A.
2. init(s) yields true for each s ∈ S0.
3. There exists a set of states Sv ⊆ S such that inv(s)

yields true for each s ∈ Sv , S0 ⊆ Sv and for each ai ∈
A and d ∈ D such that Pai(s ∪ {p �→ d}) yields true
then Δ(s, ai, d) is non-empty and its elements s′ are
all included in Sv . Furthermore, Qai

(s∪s′∪{p �→ d})
holds2.

2Note that s′ : V → D, however it can be straightforwardly reinter-

preted as a mapping from V ′ to D.
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In the rest of the paper, given an implementation, Sv will

denote the smallest set satisfying the above conditions.

A possible implementation of contract of Figure 1 for a

buffer of size four is the Data State Machine of the form

I = 〈V, D, A, S, S0, Δ〉, where:

V = {a, wp, rp}
D = Z ∪ ({0, 1, 2, 3} → Z)
A = {read, write}
S =

{
s

∣∣∣∣ |s(a)| = 4 ∧ 0 ≤ s(rp) < 4 ∧
0 ≤ s(wp) < 4 ∧ s(rp) �= s(wp)

}

S0 =
{(

a �→ [0 �→ 0, 1 �→ 0, 2 �→ 0, 3 �→ 0],
rp �→ 3, wp �→ 0

)}

Informally, the function Δ is defined as having transitions

from every state that satisfies the precondition of a given

action, going to every possible state that satisfies the post-

condition of the same action.

The number of states of this implementation is

values|a| × |a| × (|a| − 1), where values is the number

of different values that can be entered in the array. For in-

stance, if we only allow booleans and the array is of size

4, we would have 192 states. This shows that abstraction is

necessary even for a simple example like the circular buffer.

We use Finite State Machines to provide an abstract rep-

resentation of a contract, or more precisely, of the imple-

mentations allowable by a contract. Simply, a FSM is de-

fined as a structure M = 〈S, S0, Σ, δ〉 where S is a finite

set of states, S0 ⊆ S is the set of initial states, Σ is a finite

alphabet and δ : S × Σ → ℘(S) is a transition function.

We now define a finite contract abstraction as a FSM

which is able to simulate any possible contract implemen-

tation.

Definition 4 (Finite State Contract Abstraction (FSCA)).
Given a contract C = 〈V, inv, init, A, P, Q〉, an inter-
pretation 〈D, Dop〉 and a FSM M = 〈S, S0, Σ, δ〉 we say
that M is a finite state contract abstraction (FSCA) of C un-
der the interpretation 〈D, Dop〉 iff for each implementation
I = 〈V, D, A, S, S0, Δ〉 of C there exists a total func-
tion absI : Sv → S such that:

1. absI(S0) ⊆ S0

2. For every s ∈ Sv , and every action label ai

and actual parameter d such that Pai
holds, then

absI(Δ(s, ai, d)) ⊆ δ(absI(s), ai).
Having fixed, in the notion of contract, what we mean

by a pre/post-condition-based specification, and having for-

mally defined contracts, their acceptable implementations

and finite state abstractions of these, in the next section we

concentrate on finding a finite state abstraction of a con-

tract which is abstract enough to enable validation yet not

too coarse (note that universal language generator would

fit previous definition) to impede finding problems with the

contract-under-analysis.

4. FSCAs for Contract Validation

In this section we show how to construct a finite state

contract abstraction from a contract. The particular level of

abstraction for the FSMs to be constructed is based on the

notion of enabledness. This level of abstraction results in

state invariants in the contract abstraction which are com-

pact, intuitive and can be easily traced back to the contract.

We believe that this is essential to facilitate the task of the

engineer that must mentally fill the gap between abstraction

and contract in order to validate and fix the latter.

The core idea for setting the level of abstraction to sup-

port contract validation is to capture the different states

of the contract that are relevant in terms of the operations

which are enabled at a given time. This means that we will

group together concrete states of contract implementations

based on the preconditions that are satisfied at those states.

Definition 5 (Enabledness Equivalence). Given a contract
C = 〈V, inv, init, A, P, Q〉, an implementation of the
form I = 〈V, D, A, S, S0, Δ〉 of C under 〈D, Dop〉 and
two concrete states s, t ∈ S we say that s and t are enabled-

ness equivalent states (noted s ≡e t) iff for every a ∈ A:
• ∃ d . Pa(s ∪ {p �→ d}) ⇒ ∃ d′ . Pa(t ∪ {p �→ d′})
• ∃ d′ . Pa(t ∪ {p �→ d′}) ⇒ ∃ d . Pa(s ∪ {p �→ d})
Note that this definition is comparable to requiring sim-

ulation equivalence for just one step.

An enabledness-preserving abstraction is a finite state

contract abstraction in which concrete states are partitioned

by enabledness equivalence. In other words, they are

grouped based on the one-step availability of actions.

Definition 6 (Enabledness-preserving FSCA). A Finite
State Contract Abstraction M = 〈S, S0, Σ, δ〉 of a con-
tract C = 〈V, inv, init, A, P, Q〉 under an interpretation
〈D, Dop〉 is enabledness-preserving iff for every implemen-
tation I of C there exists absI : Sv → S (a witness abstrac-
tion function) such that given a pair of concrete states s, t
on Sv , then s ≡e t ⇔ absI(s) = absI(t) holds.

In order to construct an enabledness-preserving FSCA

we first need to define the notion of action set invariant.
Given a subset of actions as of a contract C, we wish to

characterise all concrete states s of implementations of C
that satisfy the contract invariant inv in which every action

a in as is possible from s (there exists a parameter p for

every action a in as such that the precondition Pa of action

a holds) and, importantly, in which every action a not in as
it is not possible from s.

Definition 7 (Invariant of an Action Set). Given a contract
C = 〈V, inv, init, A, P, Q〉, the invariant of a set of ac-
tions as ⊆ ℘(A) is the predicate invas ∈ P (V ) defined as:

invas
def
= inv ∧

∧
a∈as

∃p. Pa ∧
∧

a/∈as

�p. Pa
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Using action set invariants the construction of an

enabledness-preserving abstraction is straightforward:

Definition 8 (Enabledness-preserving FSCA Construction

Algorithm). Given a contract C = 〈V, inv, init, A, P, Q〉
and an interpretation 〈D, Dop〉, we proceed to build an FSM
M = 〈S, S0, Σ, δ〉 where

1. S = ℘(A)
2. as ∈ S0 iff init ⇒ invas.
3. Σ = A.
4. For all as ∈ S and a ∈ Σ, if a �∈ as then δ(as, a) = ∅,

otherwise:
δ(as, a) ⊇ {

bs
∣∣ invas ∧ Qa ∧ inv′

bs is satisfiable
}

Observe that the constructed enabledness-preserving

FSCA never has two states with the same available actions.

It is straightforward to prove that the FSCA constructed

according to Definition 8 is an enabledness-preserving ab-

straction.

Theorem 1. Given a contract C and an interpretation
〈D, Dop〉, then M as built by Definition 8 is an enabledness-
preserving FSCA of C under the 〈D, Dop〉.

The proof for the theorem can be simply done showing

that, given an implementation I ,

absI(s)
def= {a | ∃ d ∈ D . Pa(s ∪ {p �→ d})}

is a witness abstraction function such that every pair of con-

crete states s, t satisfy that s ≡e t ⇔ absI(s) = absI(t).
Returning to the example of Section 2, the FSCA in

Figure 2 is an enabledness-preserving abstraction of the

circular buffer contract depicted in Figure 1. The action

sets for states S0, S1 and S2 are {write}, {write, read},
and {read}, respectively. In addition, it is simple to show

that the initial state has been set correctly as init implies

inv{write}. The satisfiability proofs for transitions are more

complex to show and were computed using SMT solvers

(see the next section).

Notice that the abstractions that we produce are able to

simulate every possible implementation of a contract. How-

ever there may be traces of the FSCA that are not feasible on

any given implementation. For instance, write → read
→ read can be performed in the FSCA of Figure 2 but it is

not possible to read twice after writing once on any circular

buffer implementation independently of its size.

It is important to note that item 4 of Definition 8 could

be strengthened by requiring equality rather than inclusion.

The reason for choosing a weaker condition is that in prac-

tice it is undecidable to check if invas ∧Qa ∧ inv′
bs is sat-

isfiable. The theorem above guarantees that choosing to add

transitions in the face of uncertainty still guarantees the con-

struction of a proper abstraction. In the case of the abstrac-

tion for the circular buffer in Figure 2 no additional transi-

tions due to unfinished satisfiability checks were added.

In the presence of spurious transitions the possibility of

having FSCA traces that are not feasible on any implemen-

tation is even higher. Fortunately, state-of-the-art theorem

provers are increasingly able to deal with different “kinds”

of formulae in a complete fashion and therefore cases of

uncertainty did not arise in any of our case studies.

5. Tool Support and Case Studies

In this section we comment on some of the aspects in-

volved in the validation of our approach. We discuss tool

support and various case studies.

5.1. Tool Support

In order to validate our approach we built a prototype

tool3 in PYTHON that takes a contract description as input

and returns an enabledness-preserving finite state contract

abstraction. It uses Satisfiability Modulo Theories (SMT)

solvers [4] to reason about satisfiability of the formulae as

described in Section 4. In cases where these solvers time-

out or return “unknown” we assume that the formula is sat-

isfiable, resulting in additional transitions in the enabled-

ness preserving FSCA. As discussed in the previous section,

item 4 of Definition 8 allows these conservative decisions,

and Theorem 1 guarantees the construction of a proper ab-

straction of the contract. In any case, for the case studies

discussed in this section, no transitions were added as a re-

sult of limitations of the SMT solvers.

The rest of this section deals with three case studies used

to test the tool, its capabilities and, more importantly, to

validate the approach. Note that even this initial and naive

prototype implementation is capable of dealing with reason-

ably complex examples in times that range from a couple of

seconds up to about 2 minutes in a standard desktop com-

puter (Core2Duo with 2GB of RAM memory).

5.2. .NET NegotiateStream Protocol

The aim of this case study was twofold. On one hand,

we intended to validate the utility of the approach in aiding

the construction of pre/post condition-based specifications.

The hypothesis was that by using behaviour models early in

the development of the specification, bugs can be detected

and guidance on how to fix them can be obtained. On the

other hand we aimed at validating whether the approach can

support identifying problems in real specifications.

Inspired by quality process and model-based testing ap-

proach described in [8] we selected as case study subject

a Microsoft protocol specification currently under revision:

3The tool is available online for download together with the case studies

used in this work at http://lafhis.dc.uba.ar/contractor.
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S1 S2openTCP

S10

closeTCP

S3gssInitSec

S4gssInitSec

S5
gssInitSec

closeTCP

S7sndInProgress

closeTCP

S6

sndDone

closeTCP, sndError

sndError

closeTCP, rcvError

rcvInProgress, rcvError

S8

rcvDone

S9

rcvDone

closeTCP, rcvError

rcvError
rcvDone

rcvDone

closeTCP
sndData, rcvData

closeTCP, sndFData, rcvFData

sndFData, rcvFData

Figure 4. Enabledness-preserving Finite State Contract Abstraction for the NegotiateStream protocol

The MS-NSS protocol [1] conceived for the negotiation of

credentials between a client and a server over a TCP stream.

The protocol has two phases: (i) a negotiation phase in

which client and server exchange security tokens using the

GSS-API [13] and (ii) a data transfer phase in which actual

data is transmitted according to the negotiated standards.

Basically, the negotiation phase starts with the client

sending a security token to the server including a requested

security level (e.g. encryption and/or signature). The server

processes this token and sends an answer to the client,

which processes it and sends back another answer. This pro-

cess is repeated while the token that they send each other is

a continuation token and is finished usually when one of the

following situations takes place:

• An error message is sent by either the client or the

server, in which case the client may try again or ter-

minate the negotiation.

• The server sends an acceptance token indicating the

client the end of the first phase (a security mechanism

like Kerberos may have been negotiated run-time).

This token includes the final protection level, which

could be weaker than the required by the client.

Once the data transfer phase begins, the client can ex-

change data with the server. Data exchange requires fram-

ing when signature and/or encryption are implied by the

negotiated protection level. As negotiation phase, data ex-

change phase can result in an error in which case the com-

munication is usually terminated.

The case study was conducted as follows. First, a person

completely unfamiliar with the protocol but experienced

in writing pre/post condition-based specifications read the

publicly available protocol specification document describ-

ing the protocol ([1]4). Then, the same person wrote a con-

tract for the protocol validating the protocol against the doc-

ument and using as sole automated support the prototype

described above. Once the protocol’s contract was com-

pleted, an engineer with experience in protocol validation

analysed the enabledness preserving abstraction produced

by our prototype in order to validate the contract specifica-

tion and the protocol specification document itself.

The protocol specification document is structured natu-

ral language description containing two auxiliary state ma-

chines. The natural language description is considered the

normative specification of the protocol, the state machines

are simply aides and references for the reader.

The protocol contract developed was actually conceived

as a set of controllable and observable actions appearing in

the specification of client side. Both natural language and

auxiliary state machines were used to aid the comprehen-

sion of the protocol specification document, but only the in-

formation provided in natural language was used as a source

for the contract-to-be. It is worth mentioning that models

developed in [1] include server-side requirements since the

main goal of the QA project is to check protocol specifica-

tion document compliance against Windows products. For

our experiment, the modeller did not resort to server-side

specification section of the document.

During the contract development process the modeller

used the enabledness preserving FSCA produced by our

tool to eliminate bugs and typos from the specification being

4Version 2.0 was the most updated version when this paper was first

sent for review. Since then, version 3.0 was published, which corrects

some of the inconsistencies we describe.
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Figure 5. Enabledness-preserving Finite State Contract Abstraction for the ATM

developed. The FSCA was analysed using inspection tech-

niques and simulating scenarios appearing in the protocol

specification document. Such analyses allowed uncovering

inconsistencies in the contract-under-development such as a

client trying to send a token before having produced it, or a

client receiving responses to messages that had never been

sent to the server. As a result of the construction effort,

a number of under-specified aspects were identified in the

protocol specification document, these were documented

and modeled as non-deterministic actions in the contract.

The validation of the final contract specification, and in-

directly, of the protocol specification document was per-

formed by the experienced engineer. Most of the validation

was done by inspection, guided by enabledness preserving

abstraction (Fig.4) and the modellers expertise, going into

the detail of the contract and finally the protocol specifica-

tion document if needed.

As a result of the validation three kinds of issues were

raised. First, two questions regarding the behaviour of the

client were raised as a result of identifying some aspects

that were unclear in the protocol specification document:

• A client may receive a message rcvInProgess af-

ter sending message sndDone? This means that the

client determined that the negotiation phase is over

whereas the server acts differently.

• In case of error, should the client close the TCP con-

nection and start from scratch or should it retry using

the same connection?

Second, an inconsistency between the natural language

specification of the client behaviour and the state ma-

chine of the protocol specification document describing

the server behaviour was identified: The enabledness-

preserving FSCA for the client constructed automatically

from the protocol’s contract composed in parallel with the

state machine for the server leads to a deadlock. This raises

the following question:

• May a client receive rcvDone without ever sending a

sndDone message? This implies that the server may

unilaterally decide to enter the data transfer phase.

Note that, in fact, the contract and hence the natural lan-

guage specification for the client is consistent with the natu-

ral language description for the server (which is the norma-

tive part of the specification), hence the issue raised above

actually shows an discrepancy between text specification

and diagrammatic-aide of the server side in the protocol

specification document.

Finally, inspection of the enabledness-preserving FSCA

also helped find some discrepancies between the textual

specification and diagrammatic aide for the client side:

• In the state machine sndError goes to a state in

which they wait for a message from the server. Ac-

cording to the protocol specification document after

this event the client should either terminate the con-

nection or retry the whole phase; none of these situ-

ations involves waiting for messages. The FSCA our

tool produced is consistent with the protocol specifica-

tion document text.

• An analogous situation happens with rcvError.

It is worth mentioning that the enabledness-preserving

FSCA obtained (Figure 4) featured almost the same level

of abstraction than the state machines in the document5.

We find this observation interesting because we believe that

hand-written diagrammatic-aides although useful to convey

information are usually inaccurate or out-of-date artefacts.

5Our FSCA has more states and transitions because contract models

local GSS-API calls explicitly and we distinguish encrypted and plain data

transmissions.
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In summary, we believe the automated construction

of an enabledness preserving finite state abstraction of

the protocol’s contract aided in the development of a

pre/post-condition based specification of an existing indus-

trial strength protocol and also supported identifying poten-

tial issues with the protocol’s existing documentation.

WebFetcher

variable site string

variable cxn socket

inv site �= null ∧ (cxn �= null ⇒ cxn.state = open)
start site �= null ∧ cxn = null

action setSite(string s)
pre s �= null ∧ cxn = null post site′ = s

action open()
pre cxn = null post cxn′ �= null ∧ cxn′.state = open

action close()
pre cxn �= null post cxn′ = null

action getPage()
pre cxn �= null post true

Figure 6. Specification of a web page fetcher

S1

setSite

S2open
close

getPage

Figure 7. FSCA for the web page fetcher

5.3. ATM

We applied our approach to the ATM case study. To val-

idate our results we used the work described in [22] where

a StateChart model is inferred from scenarios and pre/post

conditions for actions appearing in them.

We fed our tool with the pre/post specification used

in [22] to construct a StateChart for the ATM and obtained

the enabledness-preserving FSCA in Figure 5. Note that we

did not use the scenarios provided in [22] .

We compared our FSCA model with the StateChart

provided in Figure 11 of [22] with respect to simula-

tion. As a result, we found that the following trace in

the StateChart can not be exhibited by the enabledness

preserving contract abstraction: displayMainScreen,

insertCard, requestPassword, enterPassword,

canceledMessage, ejectCard, requestTakeCard,

takeCard, displayMainScreen, insertCard,

requestPassword.

Analysis of the execution of the trace on both mod-

els, showed that while the takeCard action in the Stat-

eChart led back to its initial state, this did not occur in

our FSCA. Based on this observation, we compared the

invariants of the states reached by the execution up to

takeCard and found that they differed on the accept-

able values for the passwdGiven system variable. It turns

out that takeCard’s postcondition does not update the

passwdGiven system variable to false. The impact of this

is that, according to the pre/post specification in [22], the

ATM never returns to a state where it can accept a new pass-

word to be entered because it already has one.

In summary, the construction of an enabledness-

preserving FSCA from the pre/post specification of an ATM

in [22] supported uncovering errors in the specification and

also shows that the scenario synthesis technique therein pro-

posed does not preserve postconditions of operations.

5.4. WebFetcher

We considered a case study presented in [5] which ex-

tends the notion of typestates for object oriented languages:

a class modelling a web page fetcher. The class provides

methods to set the target URL, to open and close the con-

nection and to fetch data, as seen in Figure 6.

Our tool applied to the web fetcher contract results in

the FSCA depicted in Figure 7. The states, the transitions

(as depicted in the diagram) and the invariants (as computed

according to Definition 7) that our technique produces coin-

cide with the manually constructed typestate FSM diagram

shown in [5]. Furthermore, our technique could be extended

to produce typestates automatically from contracts.

6. Discussion and Related Work

The notion of abstraction used in this paper relates a fi-

nite state machine with all possible implementations of a

contract. An alternative approach is to define one canonical

implementation of a contract and then have a stronger no-

tion of abstraction that preserves simulation equivalence or

even bisimilarity with respect to that implementation. Such

an approach would allow analysis of the abstraction to pro-

vide stronger guarantees on the implementation; However,

validation of such a model would be significantly hindered:

Firstly, requiring preservation of behaviour implies that a

minimal finite state abstraction may not exist. For instance,

the circular buffer example used in Section 2 would not have

a finite state bisimulation abstraction. Secondly, even if a fi-

nite bisimulation exists, the size of the abstraction may be

too large to validate. For instance, the NegotiateStream pro-

tocol would have a bisimulation abstraction that is roughly

twice the size than ours since it would have to account for

the requested protection level from the first call to GSSinit-

sec operation done by the client. Finally, given an abstract

state, predicates characterising which concrete states are

represented by it (i.e. “abs−1”) are likely to be cumbersome

and hard to relate with the original contract predicates. Note

that an enabledness preserving abstraction can be viewed as

“1-step bisimulation” abstraction.
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Our work can be considered as part of the broad area

of predicate abstraction [20, 3] in that we produce abstrac-

tions based on predicates that characterise the enabledness

of sets of operations. Within this area, a closely related

technique is the construction of finite state machines from

Z specifications (which include pre and postconditions) and

Live Sequence Charts (LSCs) [18]. Although there are sim-

ilarities with our work in how transitions are computed the

key difference is in the predicates used for abstraction: In

[18] predicates found in LSCs are used to construct the set

of states, while pre and postconditions are used to con-

struct transitions. We use pre and postconditions for con-

structing both the states and the transitions, thus leverag-

ing the enabledness concept in order to generate models

which are useful for validation. Other predicate abstraction

approaches such as counterexample-guided abstraction re-

finement (CEGAR) sometimes need an initial model from

which then the iterative process is performed. We believe

that FSCAs may serve that purpose.

Other contract validating techniques such as the ones

presented in [8, 12, 15] explore the state space of a given

contract either symbollicaly or concretely but they do not

intend to construct a complete finite abstraction of it. We

believe the latter provides a global view that can aid, in a

complementary manner, the validation of contracts.

The ideas presented in [21] are also aimed at validation

of contracts by automatically constructing finite state ma-

chines from them. However, the construction does not in-

volve further abstraction: the language used for the pre and

postconditions requires a bounding the number and values

of propositions and predicates.

The comparison with behavioural abstractions is linked

to the minimisation problem of transition systems [10, 19].

These algorithms are based on finding a maximum fixed

point by stabilising state space partitions. Besides the short-

comings mentioned regarding requiring bisimilarity in our

setting, in general, such approaches do not deal with actions

with parameters in the implicit expression of the transition

system (our LTS may have infinitely many labels due to pa-

rameters). The exception seems to be [19] where the authors

present a technique for obtaining an untimed abstraction of

timed automata. In timed automata semantics, the LTS also

features infinitely many time transitions, that is transitions

labelled with a real number standing for time elapsed from

the source state. The abstractions yield by that technique

feature an abstract time transition when for every state rep-

resented by the source abstract state there exists an amount

of time to elapse and thus change to a state which maps

to the target of the abstract transition. That is, it works as

an existential elimination of the parameter value. Similarly,

our technique exhibits a transition at the abstract level if

there may be at least one parameter value (and a concrete

state) to jump to the target abstract state. Unlike [19], we

do not require every concrete state to be enabled to perform

such a jump (i.e., we are not requiring Pre-stability of the

yielded abstraction).

Dynamic invariant detecting tools such as Daikon [6]

have proven useful in many contexts. In our case, Daikon

could be used to obtain pre/post conditions, as well as in-

variants, for a particular program. With this information

we could proceed and create a FSCA for that program and

produce a graphical and concise representation of the ex-

tensive amount of information that Daikon produces. Using

this configuration we would be able to provide the user an

online abstraction of the program he is writing. We would

have to take into account that the assertions that Daikon out-

puts are true for the runs that it used to create them, yet non

necessarily true for all the possible runs. Other techniques,

such as [2], aim at creating finite models out of programs via

predicate abstraction; our work differs in that we are inter-

ested in generating abstractions directly from the contract,

regardless of any program that may implement it.

Our approach relates to the mining of temporal speci-

fications (e.g. [7]), which aims at producing, from traces,

a finite state automata that describes how a set of opera-

tions is used. The main difference with our work is that

the resulting automata are built from the client’s side of a

set of operations rather than from the constraints of usage

provided by a contract. In addition, mining techniques have

a dynamic flavour and their results heavily depend on the

quality of the traces used as input. On the other hand, our

technique statically yields a model that is an abstraction of

any legal implementation of a given contract.

Techniques that construct FSMs from declarative re-

quirements specifications [11] have been proposed as a

means to facilitate analysis of such specifications and to

support the transition to more design oriented modelling

techniques. A particular instance of these approaches is

the construction of FSMs from pre/post-condition speci-

fications. This approach differs from ours in that of the

pre/post-condition specification language is propositional

logic, the concrete state space is therefore finite modulo

bisimulation and that the resulting FSM has the same level

of abstraction than the specification.

7. Future Work

The scalability of our tool remains an issue. Complexity

is exponential on the number of actions (the number of ab-

stract states is in the worst case the powerset of actions A),

however evidence shows that the enabledness-equivalence

partition of states is much smaller than 2|A|. Hence, an

on-the-fly exploration of the state space could be a way of

drastically improving scalability. Parallelisation of the al-

gorithm is also possible, since the expensive transition dis-

covery process is independent from one abstract state to an-
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other. Nonetheless, as reported in the Case Studies Section,

performance for a industrial sized protocol was not an issue.

Although in the discussion we mention that aiming for

property preservation, such as in bisimulation abstractions,

hinders practical validation, we believe that extending our

abstractions with modalities might be a way to get small

abstractions that provide more property preservation. More

concretely, introducing modalities into our finite state ab-

stractions could help distinguish between may transitions

(FSCAs current interpretation) and transitions that can al-

ways be traversed selecting the right parameter values.

Finally, we would like to introduce the possibility to ex-

tend FSCAs with hierarchical states such as in UML State-

charts by considering abstractions that arise from the omis-

sion of subsets of actions. Another interesting feature would

be to allow the decomposition of the FSCA into communi-

cating FSCAs that run in parallel. Both features may pro-

vide more compact representations that allow a better visu-

alisation the different concerns involved in a contract.

8. Conclusions

In this paper, we have precisely formalised the concept

of finite behavioural contract abstractions, showing their po-

tential validation capacity. We have provided a novel sym-

bolic algorithm that leverages the concept of action set en-

abledness to get a finite contract abstraction that is both

concise and handy for validation purposes. We have im-

plemented our algorithm as a practical tool and used it to

get finite abstractions of a variety of contracts. These finite

models led us to discover previously unknown inconsisten-

cies or omissions in real-life specifications.

Finally, we believe that the succinctness of the abstrac-

tions we obtain with our technique makes them valuable and

versatile tools when constructing or analysing contracts.
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