Synthesis of Timed Behavior From Scenarios in the Fujaba Real-Time Tool Suite *

Stefan Henkler, Joel Greenyer, Martin Hirsch, Wilhelm Schifer,
Kahtan Alhawash, Tobias Eckardt, Christian Heinzemann, Renate Loffler
Software Engineering Group
University of Paderborn, Germany
{shenkler,jgreen,mahirsch,wilhelm,alhawash,tobie,chris227,renate } @uni-paderborn.de

Andreas Seibel and Holger Giese
System Analysis and Modeling Group
Hasso Plattner Insitute, University of Potsdam, Germany
{andreas.seibel,holger.giese } @hpi.uni-potsdam.de

Abstract

Based on a well-defined component architecture the tool
supports the synthesis of so-called real-time statecharts
from timed sequence diagrams. The two step synthesis pro-
cess addresses the existing scalability problems by a proper
decomposition and allows the user to define particular re-
strictions on the resulting statecharts.

1. Introduction

The current and even more so next generation of so-called
embedded or mechatronic systems will behave more intel-
ligently than todays systems by building communities of
autonomous components (or agents) that exploit local and
global networking to enhance their functionality [16].
Typical examples of this type of systems are advanced
transportation systems like driver assistance systems in cars,
which can inform the driver about accidents and also take
appropriate actions in case of an emergency, or as another
example, cooperative illumination of roads. In either case,
cars communicate with each other extensively. Another ex-
ample of this type of system is the Paderborn RailCab sys-
tem, which is used to illustrate the approach described here.
The complexity of these systems as well as the inabil-
ity to test them sufficiently enough to guarantee crucial
safety properties demands a model driven approach. Our
approach, called MECHATRONIC UML, which is imple-
mented by the FUJABA Real-Time Tool Suite, is based

*This work was developed in the course of the Special Research Ini-
tiative 614 — Self-optimizing Concepts and Structures in Mechanical En-
gineering — University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE

615

on specifying components by a refined UML 2.0 compo-
nent model. Refinement concerns in particular the detailed
definition of ports and connectors which specify a peer to
peer communication between components by using real-
time statecharts'. Each single port-to-port connection is de-
fined by a single statechart that specifies the roles of the
two ports and the corresponding connector properties. Such
a port-to-port communication is called a coordination pat-
tern in our approach [8]. Further refinement of the compo-
nent model concerns a proper integration between the dis-
crete parts specifying the component interaction and conti-
nous control specifying individual controllers by differen-
tial equations.

While our tool demonstration at ICSE 07 [3] presented
the latter part and especially illustrated real-time simula-
tion of components in a 3D environment, this paper and
the corresponding tool is about specifying the coordination
patterns and the individual component communication be-
havior. The precise definition of the coordination patterns
is synthesized from a scenario-based specification. This
specification especially supports the definition of time con-
straints as it is required for the communication of hard real-
time systems. The synthesis algorithm generates a real-time
statechart specifying a single coordination pattern from a
number of given scenarios. In a second synthesis step,
a complete component behavior concerning its interaction
with other components is automatically derived from the
statecharts generated by the first step. These two synthe-
sis steps (see Figure 1) and especially their corresponding
tool support are the subject of this paper. Please note that
the definition of coordination patterns is also the key to a
compositional formal verification approach which is how-

IReal-time statecharts are an extension of timed automata

ever beyond the scope of this paper and has been described
elsewhere [8, 4].

Key original contributions of the two synthesis steps are
(1) the use of parameterized timing constraints in the defi-
nition of the sequence diagrams which are input to the first
synthesis step and (2) the not necessarily only parallel com-
position of the different statecharts in the second step, i.e.
the algorithm accepts additional so-called state restrictions
as input which may exclude certain (timed) state sequences
from the parallel product of the statecharts (roles). The al-
gorithm however checks whether those restrictions do not
violate the specifications of the sequence diagrams from
which the statecharts have been derived, i.e. restrictions do
not change the observable behavior of the roles.

act Integrated Synthesis Approach J

specify scenarios synthesize RT instantiate
coordination pattern coordination pattern

synthesize
component behavior

specify dependencies
/ restrictions
between roles

®

Figure 1. Overview of synthesis process

Next, we explain the parametrized timed scenario syn-
thesis approach (cf. [7]). Afterward, we explain the synthe-
sis approach of the component behavior (cf. [12]). Finally,
we compare our approach with related work and we con-
clude with final remarks.

2. Coordination Behavior Synthesis

We use a restricted subset of UML 2.0 sequence dia-
grams [14, p. 435] to specify parametrized timed scenarios.
UML 2.0 sequence diagrams allow us to specify durations
for message transfers and lower and upper bounds for the
time passed between two points on a lifeline. Upper bounds
may be arbitrary sums of constants and parameters whereas
lower bounds may only consist of constants (in contrast to
UML 2.0 sequence diagrams).

Distinguishing optional and required behavior is another
important aspect of scenarios. Triggers have first been pro-
posed as a technique for expressing conditional behavior for
live sequence charts (LSC) [11] and also appear in triggered
message sequence charts (TMSCs) [17]. We use the as-
sert block introduced by UML 2.0 sequence diagrams [14,
p. 444] to describe the conditional behavior of parametrized
timed scenarios. Such blocks indicate a mandatory se-
quence of behavior that needs to be executed once the pre-
ceding steps have been observed and the block has been en-
tered. For dealing with cases where several assertions are in
conflict, we assign priorities to scenarios.

616

In order to facilitate the transition to a state-based model,
we explicitly add state labels to the lifelines, which repre-
sent states or sets of possible states [14, p. 442]. The labels
allow us to use self-documenting state names in the gener-
ated statecharts and to enable the specification of configura-
tions [5].

‘ act Synthesis of Coordination Pattern)
I

s

—=| static conflict detection

detecting assertion
(lower and upper bounds) conflicts

derive and analyse
inequality system

Subset of UML
sequencediagrams
I
Parameterized
time restrictions

Inequalities

Coordination
Pattern

[synthesize pattern

]

-~/

Figure 2. Overview synthesis of coordination
pattern

The synthesis algorithm (see Figure 2) first checks
whether the specified time constraints are consistent within
a single scenario, e.g. that a deadline may not be earlier than
the sum of the lower bounds of all required operations. Sec-
ondly, time constraints are checked across different scenar-
ios and the algorithm checks assert blocks for correctness as
they can lead to conflicts when two scenarios require mutu-
ally exclusive behavior.

In order to solve the synthesis problem, the parametrized
time constraints are transformed into a system of linear in-
equalities. These are then passed to a constraint solver (ei-
ther a free proprietary implementation of the simplex algo-
rithm or the — much more efficient — commercial CPLEX
library) which determines valid values, respectively ranges,
for each parameter. If a configuration yielding a consis-
tent specification exists, the scenarios can be transformed
and combined in order to obtain role behavior in the form
of a parametrized real-time statechart. These can then be
turned into a regular real-time statechart by selecting pa-
rameter values from the computed ranges [6].

The “two step” approach sketched above addresses the
usually intractable synthesis problem, at least in its most
general form. Like other approaches [1] which also con-
sider the parametrized case as well as mandatory behavior
and not centralized behavior, the first step takes only lo-
cal context into account. A second verification step checks
whether the synthesis result is correct after valid parameter
values have been selected.

In practice, specifying timing information such as worst-
case execution times (WCET), deadlines, or timeouts
early during the requirements definition phase is difficult.
By starting from parametrized scenarios, we can set the
parametrized constraints in a meaningful context (the re-

quirement of a particular application) and identify the maxi-
mal possible timing constraint within the predefined ranges.
This enables to specify more general timing constraints for
supporting different target platforms instead of specifying
absolute values for the timeouts.

This synthesis approach avoids scalability problems be-
cause, firstly, the synthesis is supported by providing details
about the states involved in the communication behavior.
Secondly, the synthesis problem for real-time patterns re-
mains tractable because the single patterns limit the number
of interacting roles so that only a moderate number of sce-
narios has to be synthesized by one run of the algorithm. In
the next section we explain how restrictions can be consid-
ered when combining the synthesized patterns in a compo-
nent architecture.

3. Component Behavior Synthesis

After the synthesis of the coordination patterns and their
constituent parts, namely their roles, in a second step the
different roles have to be mapped (manually) to the ports
of a given component architecture. Our tool guarantees that
connected ports in the component diagram are assigned the
corresponding roles of a coordination pattern (see the ex-
ample in the appendix for further details).

After each port of a component has been assigned a role
(of a corresponding pattern), the overall component behav-
ior is synthesized automatically. In a first step, our algo-
rithm simply computes the parallel composition of all roles
or, more technically speaking, of all statecharts.

However, the user may specify restrictions on sequences
of states executions paths which should not occur in the syn-
thesized component behavior, i.e. which restrict the compo-
nent behavior [12]. These restrictions are given in the form
of Boolean expressions or in the form of timed automata.
The first possibility is used when a restriction does not in-
clude any timing constraints.

Our algorithm checks whether the given restrictions are
not in conflict with the statechart behavior as synthesized in
the first step from the specified sequence diagrams. If so,
the user is informed and asked to resolve this conflict. If
not, the statechart defining the component behavior is syn-
thesized by changing the parallel composition of the role
automata with respect to the defined state restrictions.

4. Related Work

For synthesizing statecharts from scenarios with timing
constraints, only a number of limited approaches exist. The
approach proposed in [18] synthesizes only global solutions
in form of a single automaton for non-parametrized sce-
narios, which assumes angelic non-determinism and does

617

‘ act Synthsis Component Behavior J

|
component behavior
synthesize

‘ TimedAutomata
T
TimedAutomaton
synthesize

Conflict Description

‘ Restriction Automaton \%
T

’_19

‘ State Restriction
T

Protocol conform

‘ TimedAutomaton

Figure 3. Overview component behavior syn-
thesis

not support progress conditions [19]. The approach of
[15] results in a global non-parametrized timed automaton
which supports progress, but requires scenario descriptions
in form of trees that already introduce some of the required
operational behavior. The play-out engine [11] enables the
play-out of live sequence charts (LSC) with timers, but also
only constructs global behavior for non-parametrized LSCs.

All these approaches do not support the explicit annota-
tion of states to scenarios which is of paramount importance
for embedded or mechatronic systems to enable the speci-
fication of configurations [S]. Furthermore, our approach
supports by the pattern based specification of the coordina-
tion behavior the decomposition of the system and there-
fore only synthesize the relevant composed behavior. In
contrast the general LSC synthesis approach [10] results in
a global automaton which is in a second step decomposed
and deployed which makes formal verification approaches
for LSC (with timers) like presented in [2, 20, 13] less scal-
able.

There exist some approaches which facilitate the synthe-
sis of safe real-time component behavior [9]. But no one
provides depending / non-orthogonal concerns.

5. Conclusion and Future Work

We have presented a synthesis approach for real-time com-
ponent systems. We consider the complex real-time coordi-
nation behavior as well as the complex component behav-
ior which results from the coordination behavior and the
synchronization between the coordination behaviors if re-
quired.

In [3] we have shown the specification and simulation
of reconfigurations. Based on this idea, we want to extend
our synthesis approach to hybrid systems where the recon-
figurations of controllers need to synchronized with respect
to the communication behavior between the system compo-
nents.

References

(1]

(2]

(3]

(4]

[5

—

[6

—_

(7]

[8

—

(9]

Y. Bontemps and P. Heymans. As fast as sound (lightweight
formal scenario synthesis and verification). In H. Giese and
L. Kriiger, editors, Proc. of the 3rd Int. Workshop on “Sce-
narios and State Machines: Models, Algorithms and Tools”
(SCESM’04), pages 27-34, Edinburgh, May 2004. IEE.

A. Bunker, G. Gopalakrishnan, and K. Slind. Live sequence
charts applied to hardware requirements specification and
verification: A vci bus interface model. Int. J. Softw. Tools
Technol. Transf., 7(4):341-350, 2005.

S. Burmester, H. Giese, S. Henkler, M. Hirsch, M. Tichy,
A. Gambuzza, E. Miinch, and H. Vocking. Tool support
for developing advanced mechatronic systems: Integrating
the fujaba real-time tool suite with camel-view. In Proc.
of the 29th International Conference on Software Engineer-
ing (ICSE), Minneapolis, Minnesota, USA, pages 801-804.
IEEE Computer Society Press, May 2007.

S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The Fujaba Real-Time Tool Suite: Model-Driven
Development of Safety-Critical, Real-Time Systems. In
Proc. of the 27th International Conference on Software En-
gineering (ICSE), St. Louis, Missouri, USA, pages 670-671,
May 2005.

H. Giese, S. Burmester, W. Schifer, and O. Oberschelp.
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. In Proc.
of 12th ACM SIGSOFT Foundations of Software Engineer-
ing 2004 (FSE 2004), Newport Beach, USA, pages 179—-188.
ACM, November 2004.

H. Giese, S. Henkler, M. Hirsch, and F. Klein. Nobody’s
perfect: Interactive Synthesis from Parametrized Real-Time
Scenarios. In Proc. of the 5" ICSE 2006 Workshop on Sce-
narios and State Machines: Models, Algorithms and Tools
(SCESM’06),Shanghai, China, pages 67-74. ACM Press,
May 2006.

H. Giese, F. Klein, and S. Burmester. Pattern synthesis from
multiple scenarios for parameterized real-timed uml models.
In S. Leue and T. Systd, editors, Scenarios: Models, Algo-
rithms and Tools, volume 3466 of Lecture Notes in Com-
puter Science (LNCS), pages 193-211. Springer Verlag, 0
2005.

H. Giese, M. Tichy, S. Burmester, W. Schifer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. In Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38—47. ACM
Press, September 2003.

G. Gossler and J. Sifakis. Component-based construction
of deadlock-free systems. In FST TCS 2003: Foundations

618

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

of Software Technology and Theoretical Computer Science,
volume 2914/2003 of Lecture Notes in Computer Science,
pages 420-433. Springer Berlin / Heidelberg, 2003.

D. Harel and H. Kugler. Synthesizing state-based object
systems from LSC specifications. In Implementation and
Application of Automata, volume 2088 of Lecture Notes in
Computer Science, pages 1-33. Springer Berlin / Heidel-

berg, 2001.
D. Harel and R. Marelly. Playing with Time: On the Spec-

ification and Execution of Time-Enriched LSCs. In Proc.
10th IEEE/ACM Int. Symp. on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MAS-
COTS 2002), Fort Worth, Texas, USA, 2002. (invited paper).
S. Henkler, T. Eckardt, A. Seibel, and H. Giese. Synthesis
of real-time component behavior. Technical Report tr-ri-08-
296, University of Paderborn, Paderborn, Germany, Dezem-
ber 2008.

J. Klose, T. Toben, B. Westphal, and H. Wittke. Check it
out: On the efficient formal verification of live sequence
charts. In Computer Aided Verification, volume 4144 of Lec-
ture Notes in Computer Science, pages 219-233. Springer
Berlin / Heidelberg, 2006.

Object Management Group. UML 2.0 Superstructure Spec-
ification, 2003. Document ptc/03-08-02.

A. Salah, R. Dssouli, and G. Lapalme. Implicit integration
of scenarios into a reduced timed automaton. Information
and Software Technology, 45:715-725, August 2003.

W. Schéfer and H. Wehrheim. The Challenges of Building
Advanced Mechatronic Systems. In FOSE ’07: 2007 Fu-
ture of Software Engineering, pages 72—-84. IEEE Computer
Society, 2007.

B. Sengupta and R. Cleaveland. Triggered Message Se-
quence Charts. In W. G. Griswold, editor, Proceedings of
the Tenth ACM SIGSOFT Symposium on the Foundations of
Softare Engineering (FSE-10), Charleston, South Carolina,
USA, November 2002. ACM Press.

S. Somé, R. Dssouli, and J. Vaucher. From Scenarios to
Timed Automata: Building Specifications from Users Re-
quirements. In Proceedings of the 1995 Asia Pacific Soft-
ware Engineering Conference (APSEC ’95), 1995.

M. Walicki and S. Meldal. Algebraic Approaches to
Nondeterminism—an Overview. ACM Computing Surveys,
29(1):30-81, March 1997.

H. Wittke. A Framework for Specification Verification for
Complex Embedded Systems. PhD thesis, C. v.O. Universitit
Oldenburg, 2005.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
