\relax \citation{Boetticher2007} \citation{Kitchenham2007} \citation{Turhan2009} \citation{Shepperd1996} \citation{Mendes2003} \citation{Li2009} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{\thepage }} \@writefile{toc}{\contentsline {section}{\numberline {2}Relevancy Filtering}{\thepage }} \newlabel{section:relevancy-filtering}{{2}{\thepage }} \newlabel{equ:euclid}{{1}{\thepage }} \citation{Turhan2009} \citation{koc10} \citation{koc10} \citation{Boehm1981} \citation{Desharnais1989} \citation{Boetticher2007} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Two pass relevancy filtering. Each tree BT1 and BT2 are binary cluster trees. The red sub-tree is pruned in pass one due to high variance. The remaining subtrees (shown in green) form the right-hand tree. In pass two, test instances start at the root of this tree and traverse to the nearest child (and so on, recursively). While the sub-tree variance continues to decrease, the traversal continues. Estimates are generated from the median of the instances of the right-hand-side sub-tree with lowest variance. }}{\thepage }} \newlabel{fig:filtering}{{1}{\thepage }} \@writefile{toc}{\contentsline {section}{\numberline {3}Methodology}{\thepage }} \newlabel{EquationMRE}{{2}{\thepage }} \@writefile{toc}{\contentsline {section}{\numberline {4}Results}{\thepage }} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Without Relevancy Filtering}{\thepage }} \newlabel{none}{{4.1}{\thepage }} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}With Relevancy Filtering}{\thepage }} \newlabel{with}{{4.2}{\thepage }} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces MRE win-tie-loss results without relevancy filtering. Every odd and even line is a pair of experiments. In each pair, there is a {\em within} and a {\em cross} experiment. In {\em cross} experiment, a linear regression model is built on {\em cross} data and tested on the {\em within} data. In {\em within} experiment, the test instance is selected with leave-one-out, and a linear regression model is built on the remaining instances and tested on the selected test instance. A ``1'' denotes which item in the pair won, lost or tied.}}{\thepage }} \newlabel{fig:wltNoFiltering}{{2}{\thepage }} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces MRE win-tie-loss values for Nasa93 from 20 {\em randomized assessments}. In all treatments $tie$ values are quite high. For Nasa93, the performance of {\em cross} data is mostly same as {\em within} data.}}{\thepage }} \newlabel{fig:wltNasa93}{{3}{\thepage }} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces MRE win-tie-loss values for Cocomo81 from 20 {\em randomized assessments}. In 2 treatments {\em cross} data is the same as the {\em within} data. However, in the case of Coc81o, {\em within} outperforms {\em cross} data.}}{\thepage }} \newlabel{fig:wltCocomo81}{{4}{\thepage }} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces MRE win-tie-loss values for Desharnais from 20 {\em randomized assessments}. In the case of DesL3 the {\em within} data is much better than the {\em cross} data. For other treatments, {\em within} and {\em cross} data are statistically the same.}}{\thepage }} \newlabel{fig:wltDesharnais}{{5}{\thepage }} \citation{chen09} \bibstyle{abbrv} \bibdata{myref} \bibcite{Boehm1981}{1} \bibcite{Boetticher2007}{2} \bibcite{chen09}{3} \bibcite{Desharnais1989}{4} \bibcite{Kitchenham2007}{5} \bibcite{koc10}{6} \bibcite{Li2009}{7} \bibcite{Mendes2003}{8} \bibcite{Shepperd1996}{9} \bibcite{Turhan2009}{10} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Mean number of instances used for estimation after filtering in 20 runs. {\em Cross} datasets are combinations of two {\em within} datasets tested on another {\em within} dataset. }}{\thepage }} \newlabel{fig:srsize}{{6}{\thepage }} \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{\thepage }} \@writefile{toc}{\contentsline {section}{\numberline {6}References}{\thepage }}