\begin{thebibliography}{10} \bibitem{DasguptaL09} S.~Dasgupta and J.~Langford, ``Tutorial summary: Active learning,'' in {\em ICML}, p.~178, 2009. \bibitem{NIELSEN1993} J.~Nielsen, {\em Usability Engineering}. \newblock San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993. \bibitem{Menzies08} T.~Menzies, B.~Turhan, A.~Bener, G.~Gay, B.~Cukic, and Y.~Jiang, ``Implications of ceiling effects in defect predictors,'' in {\em PROMISE '08: Proceedings of the 4th international workshop on Predictor models in software engineering}, (New York, NY, USA), pp.~47--54, ACM, 2008. \bibitem{Smith05} L.~I. Smith, ``A tutorial on principal component analysis.''. \bibitem{Binkley10} D.~Binkley and D.~Lawrie, ``Information retrieval applications in software maintenance and evolution,'' in {\em In Encyclopedia of Software Engineering (P. Laplante, ed.)}, Taylor and Francis LLC, 2010. \bibitem{Dasgupta2008} S.~Dasgupta and D.~Hsu, ``Hierarchical sampling for active learning,'' in {\em ICML '08: Proceedings of the 25th international conference on Machine learning}, (New York, NY, USA), pp.~208--215, ACM, 2008. \bibitem{Cohn1994} D.~Cohn, L.~Atlas, and R.~Ladner, ``Improving generalization with active learning,'' {\em Mach. Learn.}, vol.~15, no.~2, pp.~201--221, 1994. \bibitem{Wallace2010} B.~C. Wallace, K.~Small, C.~E. Brodley, and T.~A. Trikalinos, ``Active learning for biomedical citation screening,'' in {\em Knowledge Discovery and Data Mining (KDD)}, 2010. \bibitem{Dasgupta2004} S.~Dasgupta, ``Analysis of a greedy active learning strategy,'' in {\em In Advances in Neural Information Processing Systems}, pp.~337--344, MIT Press, 2004. \bibitem{Balcan2006} M.-F. Balcan, A.~Beygelzimer, and J.~Langford, ``Agnostic active learning,'' in {\em ICML '06: Proceedings of the 23rd international conference on Machine learning}, (New York, NY, USA), pp.~65--72, ACM, 2006. \bibitem{FREUND1997} Y.~Freund, H.~S. Seung, E.~Shamir, and N.~Tishby, ``Selective sampling using the query by committee algorithm,'' {\em Mach. Learn.}, vol.~28, no.~2-3, pp.~133--168, 1997. \bibitem{Warmuth2002} M.~K. Warmuth, G.~R\"{a}tsch, M.~Mathieson, J.~Liao, and C.~Lemmen, ``Active learning in the drug discovery process,'' 2002. \bibitem{Gupta04} C.~Gupta and R.~Grossman, ``Genic: A single pass generalized incremental algorithm for clustering,'' in {\em In SIAM Int. Conf. on Data Mining}, SIAM, 2004. \bibitem{McCallum00} A.~McCallum, K.~Nigam, and L.~H. Ungar, ``Efficient clustering of high-dimensional data sets with application to reference matching,'' in {\em KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining}, (New York, NY, USA), pp.~169--178, ACM, 2000. \bibitem{Foss} T.~Foss, E.~Stensrud, B.~Kitchenham, and I.~Myrtveit, ``{A simulation study of the model evaluation criterion MMRE},'' {\em IEEE Transactions on Software Engineering}, vol.~vol, pp.~29no11pp985--995, 2003. \bibitem{COMPTON1995} P.~Compton, P.~Preston, and B.~Kang, ``The use of simulated experts in evaluating knowledge acquisition,'' in {\em University of Calgary}, pp.~12--1, 1995. \bibitem{SHAW1989} M.~Shaw and B.~R. Gaines, ``Comparing conceptual structures: Consensus, conflict, correspondence and contrast,'' {\em Knowledge Acquisition}, vol.~1, pp.~341--363, 1989. \bibitem{QUINLAN1986} J.~R. Quinlan, ``Induction of decision trees,'' {\em Machine Learning}, vol.~1, pp.~81--106, March 1986. \bibitem{Yang03} Y.~Yang and G.~Webb, ``Weighted proprotional k-interval discretization of naive-bayes classifiers,'' in {\em PAKADD'03}, pp.~501--512, 2003. \bibitem{DOMINGOS97} P.~Domingos and M.~J. Pazzani, ``On the optimality of the simple bayesian classifier under zero-one loss,'' {\em Machine Learning}, vol.~29, no.~2-3, pp.~103--130, 1997. \end{thebibliography}